Updated gradio app to new api

This commit is contained in:
Santiago Martinez 2023-04-07 15:20:27 -06:00
parent b8bbfe8ad4
commit 0a7ad18193

136
app.py
View File

@ -3,21 +3,10 @@ import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import batdetect2.utils.audio_utils as au
import batdetect2.utils.detector_utils as du
import batdetect2.utils.plot_utils as viz
# setup the arguments
args = {}
args = du.get_default_run_config()
args["detection_threshold"] = 0.3
args["time_expansion_factor"] = 1
args["model_path"] = "models/Net2DFast_UK_same.pth.tar"
max_duration = 2.0
# load the model
model, params = du.load_model(args["model_path"])
from batdetect2 import api, plot
MAX_DURATION = 2
DETECTION_THRESHOLD = 0.3
df = gr.Dataframe(
headers=["species", "time", "detection_prob", "species_prob"],
@ -28,97 +17,71 @@ df = gr.Dataframe(
)
examples = [
["example_data/audio/20170701_213954-MYOMYS-LR_0_0.5.wav", 0.3],
["example_data/audio/20180530_213516-EPTSER-LR_0_0.5.wav", 0.3],
["example_data/audio/20180627_215323-RHIFER-LR_0_0.5.wav", 0.3],
[
"example_data/audio/20170701_213954-MYOMYS-LR_0_0.5.wav",
DETECTION_THRESHOLD,
],
[
"example_data/audio/20180530_213516-EPTSER-LR_0_0.5.wav",
DETECTION_THRESHOLD,
],
[
"example_data/audio/20180627_215323-RHIFER-LR_0_0.5.wav",
DETECTION_THRESHOLD,
],
]
def make_prediction(file_name=None, detection_threshold=0.3):
if file_name is not None:
audio_file = file_name
else:
return "You must provide an input audio file."
if detection_threshold is not None and detection_threshold != "":
args["detection_threshold"] = float(detection_threshold)
run_config = {
**params,
**args,
"max_duration": max_duration,
}
# process the file to generate predictions
results = du.process_file(
audio_file,
model,
run_config,
def make_prediction(file_name, detection_threshold=DETECTION_THRESHOLD):
# configure the model run
run_config = api.get_config(
detection_threshold=detection_threshold,
max_duration=MAX_DURATION,
)
anns = [ann for ann in results["pred_dict"]["annotation"]]
clss = [aa["class"] for aa in anns]
st_time = [aa["start_time"] for aa in anns]
cls_prob = [aa["class_prob"] for aa in anns]
det_prob = [aa["det_prob"] for aa in anns]
data = {
"species": clss,
"time": st_time,
"detection_prob": det_prob,
"species_prob": cls_prob,
}
# process the file to generate predictions
results = api.process_file(file_name, config=run_config)
df = pd.DataFrame(data=data)
im = generate_results_image(audio_file, anns)
# extract the detections
detections = results["pred_dict"]["annotation"]
# create a dataframe of the predictions
df = pd.DataFrame(
[
{
"species": pred["class"],
"time": pred["start_time"],
"detection_prob": pred["class_prob"],
"species_prob": pred["class_prob"],
}
for pred in detections
]
)
im = generate_results_image(file_name, detections, run_config)
return [df, im]
def generate_results_image(audio_file, anns):
# load audio
sampling_rate, audio = au.load_audio(
audio_file,
args["time_expansion_factor"],
params["target_samp_rate"],
params["scale_raw_audio"],
max_duration=max_duration,
def generate_results_image(file_name, detections, config):
audio = api.load_audio(
file_name,
max_duration=config["max_duration"],
time_exp_fact=config["time_expansion"],
target_samp_rate=config["target_samp_rate"],
)
duration = audio.shape[0] / sampling_rate
# generate spec
spec, spec_viz = au.generate_spectrogram(
audio, sampling_rate, params, True, False
)
spec = api.generate_spectrogram(audio, config=config)
# create fig
plt.close("all")
fig = plt.figure(
1,
figsize=(spec.shape[1] / 100, spec.shape[0] / 100),
figsize=(15, 4),
dpi=100,
frameon=False,
)
spec_duration = au.x_coords_to_time(
spec.shape[1],
sampling_rate,
params["fft_win_length"],
params["fft_overlap"],
)
viz.create_box_image(
spec,
fig,
anns,
0,
spec_duration,
spec_duration,
params,
spec.max() * 1.1,
False,
True,
)
plt.ylabel("Freq - kHz")
plt.xlabel("Time - secs")
ax = fig.add_subplot(111)
plot.spectrogram_with_detections(spec, detections, ax=ax)
plt.tight_layout()
# convert fig to image
@ -126,7 +89,6 @@ def generate_results_image(audio_file, anns):
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
w, h = fig.canvas.get_width_height()
im = data.reshape((int(h), int(w), -1))
return im
@ -140,7 +102,7 @@ descr_txt = (
gr.Interface(
fn=make_prediction,
inputs=[
gr.Audio(source="upload", type="filepath", optional=True),
gr.Audio(source="upload", type="filepath"),
gr.Dropdown([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]),
],
outputs=[df, gr.Image(label="Visualisation")],