mirror of
https://github.com/macaodha/batdetect2.git
synced 2025-06-29 14:41:58 +02:00
Minor README formatting
This commit is contained in:
parent
2d8d175f3f
commit
148611bac0
20
README.md
20
README.md
@ -2,7 +2,6 @@
|
||||
<img style="display: block-inline;" width="64" height="64" src="ims/bat_icon.png"> Code for detecting and classifying bat echolocation calls in high frequency audio recordings.
|
||||
|
||||
## Getting started
|
||||
|
||||
### Python Environment
|
||||
|
||||
We recommend using an isolated Python environment to avoid dependency issues. Choose one
|
||||
@ -23,7 +22,6 @@ source .venv/bin/activate
|
||||
```
|
||||
|
||||
### Installing BatDetect2
|
||||
|
||||
You can use pip to install `batdetect2`:
|
||||
|
||||
```bash
|
||||
@ -39,6 +37,7 @@ pip install .
|
||||
|
||||
Make sure you have the environment activated before installing `batdetect2`.
|
||||
|
||||
|
||||
## Try the model
|
||||
1) You can try a demo of the model (for UK species) on [huggingface](https://huggingface.co/spaces/macaodha/batdetect2).
|
||||
|
||||
@ -47,9 +46,9 @@ Make sure you have the environment activated before installing `batdetect2`.
|
||||
|
||||
## Running the model on your own data
|
||||
|
||||
|
||||
After following the above steps to install the code you can run the model on your own data.
|
||||
|
||||
|
||||
### Using the command line
|
||||
|
||||
You can run the model by opening the command line and typing:
|
||||
@ -66,10 +65,10 @@ batdetect2 detect example_data/audio/ example_data/anns/ 0.3
|
||||
`DETECTION_THRESHOLD` is a number between 0 and 1 specifying the cut-off threshold applied to the calls. A smaller number will result in more calls detected, but with the chance of introducing more mistakes.
|
||||
|
||||
There are also optional arguments, e.g. you can request that the model outputs features (i.e. estimated call parameters) such as duration, max_frequency, etc. by setting the flag `--spec_features`. These will be saved as `*_spec_features.csv` files:
|
||||
`python run_batdetect.py example_data/audio/ example_data/anns/ 0.3 --spec_features`
|
||||
`batdetect2 detect example_data/audio/ example_data/anns/ 0.3 --spec_features`
|
||||
|
||||
You can also specify which model to use by setting the `--model_path` argument. If not specified, it will default to using a model trained on UK data e.g.
|
||||
`python run_batdetect.py example_data/audio/ example_data/anns/ 0.3 --model_path models/Net2DFast_UK_same.pth.tar`
|
||||
`batdetect2 detect example_data/audio/ example_data/anns/ 0.3 --model_path models/Net2DFast_UK_same.pth.tar`
|
||||
|
||||
|
||||
### Using the Python API
|
||||
@ -84,19 +83,20 @@ AUDIO_FILE = "example_data/audio/20170701_213954-MYOMYS-LR_0_0.5.wav"
|
||||
# Process a whole file
|
||||
results = api.process_file(AUDIO_FILE)
|
||||
|
||||
# Load audio and compute spectrograms
|
||||
# Or, load audio and compute spectrograms
|
||||
audio = api.load_audio(AUDIO_FILE)
|
||||
spec = api.generate_spectrogram(audio)
|
||||
|
||||
# Process the audio or the spectrogram with the model
|
||||
# And process the audio or the spectrogram with the model
|
||||
detections, features, spec = api.process_audio(audio)
|
||||
detections, features = api.process_spectrogram(spec)
|
||||
|
||||
# You can integrate the detections or the extracted features
|
||||
# to your custom analysis pipeline
|
||||
# ...
|
||||
# Do something else ...
|
||||
```
|
||||
|
||||
You can integrate the detections or the extracted features to your custom analysis pipeline.
|
||||
|
||||
|
||||
## Training the model on your own data
|
||||
Take a look at the steps outlined in fintuning readme [here](bat_detect/finetune/readme.md) for a description of how to train your own model.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user