added gradio app

This commit is contained in:
Oisin Mac Aodha 2022-12-19 22:43:04 +00:00
parent 0d6eb7a248
commit 20b710118b
3 changed files with 106 additions and 4 deletions

96
app.py Normal file
View File

@ -0,0 +1,96 @@
import gradio as gr
import os
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import bat_detect.utils.detector_utils as du
import bat_detect.utils.audio_utils as au
import bat_detect.utils.plot_utils as viz
# setup the arguments
args = {}
args = du.get_default_bd_args()
args['detection_threshold'] = 0.3
args['time_expansion_factor'] = 1
args['model_path'] = 'models/Net2DFast_UK_same.pth.tar'
# load the model
model, params = du.load_model(args['model_path'])
"""
# read the audio file
sampling_rate, audio = au.load_audio_file(audio_file, args['time_expansion_factor'], params['target_samp_rate'], params['scale_raw_audio'])
duration = audio.shape[0] / sampling_rate
print('File duration: {} seconds'.format(duration))
# generate spectrogram for visualization
spec, spec_viz = au.generate_spectrogram(audio, sampling_rate, params, True, False)
# display the detections on top of the spectrogram
# note, if the audio file is very long, this image will be very large - best to crop the audio first
start_time = 0.0
detections = [ann for ann in results['pred_dict']['annotation']]
fig = plt.figure(1, figsize=(spec.shape[1]/100, spec.shape[0]/100), dpi=100, frameon=False)
spec_duration = au.x_coords_to_time(spec.shape[1], sampling_rate, params['fft_win_length'], params['fft_overlap'])
viz.create_box_image(spec, fig, detections, start_time, start_time+spec_duration, spec_duration, params, spec.max()*1.1, False)
plt.ylabel('Freq - kHz')
plt.xlabel('Time - secs')
plt.title(os.path.basename(audio_file))
plt.show()
"""
df = gr.Dataframe(
headers=["species", "time_in_file", "species_prob"],
datatype=["str", "str", "str"],
row_count=1,
col_count=(3, "fixed"),
)
examples = [['example_data/audio/20170701_213954-MYOMYS-LR_0_0.5.wav', 0.3],
['example_data/audio/20180530_213516-EPTSER-LR_0_0.5.wav', 0.3],
['example_data/audio/20180627_215323-RHIFER-LR_0_0.5.wav', 0.3]]
def make_prediction(file_name=None, detection_threshold=0.3):
if file_name is not None:
audio_file = file_name
else:
return "You must provide an input audio file."
if detection_threshold != '':
args['detection_threshold'] = float(detection_threshold)
results = du.process_file(audio_file, model, params, args, max_duration=5.0)
clss = [aa['class'] for aa in results['pred_dict']['annotation']]
st_time = [aa['start_time'] for aa in results['pred_dict']['annotation']]
cls_prob = [aa['class_prob'] for aa in results['pred_dict']['annotation']]
data = {'species': clss, 'time_in_file': st_time, 'species_prob': cls_prob}
df = pd.DataFrame(data=data)
return df
descr_txt = "Demo of BatDetect2 deep learning-based bat echolocation call detection. " \
"<br>This model is only trained on bat species from the UK. If the input " \
"file is longer than 5 seconds, only the first 5 seconds will be processed." \
"<br>Check out the paper [here](https://www.biorxiv.org/content/10.1101/2022.12.14.520490v1)."
gr.Interface(
fn = make_prediction,
inputs = [gr.Audio(source="upload", type="filepath", optional=True),
gr.Dropdown([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])],
outputs = df,
theme = "huggingface",
title = "BatDetect2 Demo",
description = descr_txt,
examples = examples,
allow_flagging = 'never',
).launch()

View File

@ -197,7 +197,7 @@ def compute_spectrogram(audio, sampling_rate, params, return_np=False):
return duration, spec, spec_np
def process_file(audio_file, model, params, args, time_exp=None, top_n=5, return_raw_preds=False):
def process_file(audio_file, model, params, args, time_exp=None, top_n=5, return_raw_preds=False, max_duration=False):
# store temporary results here
predictions = []
@ -214,6 +214,12 @@ def process_file(audio_file, model, params, args, time_exp=None, top_n=5, return
# load audio file
sampling_rate, audio_full = au.load_audio_file(audio_file, time_exp,
params['target_samp_rate'], params['scale_raw_audio'])
# clipping maximum duration
if max_duration is not False:
max_duration = np.minimum(int(sampling_rate*max_duration), audio_full.shape[0])
audio_full = audio_full[:max_duration]
duration_full = audio_full.shape[0] / float(sampling_rate)
return_np_spec = args['spec_features'] or args['spec_slices']

View File

@ -101,7 +101,7 @@
"outputs": [],
"source": [
"# run the model\n",
"results = du.process_file(audio_file, model, params, args)"
"results = du.process_file(audio_file, model, params, args, max_duration=5.0)"
]
},
{
@ -133,7 +133,7 @@
"0.2195\t0.503\t48671\tPipistrellus pipistrellus\n",
"0.2315\t0.672\t27187\tMyotis mystacinus\n",
"0.2995\t0.65\t48671\tPipistrellus pipistrellus\n",
"0.3245\t0.688\t27187\tMyotis mystacinus\n",
"0.3245\t0.687\t27187\tMyotis mystacinus\n",
"0.3705\t0.547\t34062\tMyotis mystacinus\n",
"0.4125\t0.664\t28906\tMyotis mystacinus\n",
"0.4365\t0.544\t36640\tMyotis mystacinus\n",
@ -236,7 +236,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
"version": "3.9.13"
}
},
"nbformat": 4,