tests: added tests for feature computation

This commit is contained in:
Santiago Martinez 2023-08-03 11:45:39 +01:00
parent 8e8779a72e
commit 3288f52bbd
2 changed files with 235 additions and 16 deletions

View File

@ -88,19 +88,28 @@ def compute_max_power_bb(
return np.nan
x_start = max(0, prediction["x_pos"])
x_end = min(spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"])
y_low = max(0, prediction["y_pos"])
y_high = min(
spec.shape[0] - 1, prediction["y_pos"] + prediction["bb_height"]
x_end = min(
spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"]
)
spec_bb = spec[y_low:y_high, x_start:x_end]
# y low is the lowest freq but it will have a higher value due to array
# starting at 0 at top
y_low = min(spec.shape[0] - 1, prediction["y_pos"])
y_high = max(0, prediction["y_pos"] - prediction["bb_height"])
spec_bb = spec[y_high:y_low, x_start:x_end]
power_per_freq_band = np.sum(spec_bb, axis=1)
max_power_ind = np.argmax(power_per_freq_band)
try:
max_power_ind = np.argmax(power_per_freq_band)
except ValueError:
# If the call is too short, the bounding box might be empty.
# In this case, return NaN.
return np.nan
return int(
convert_int_to_freq(
y_low - max_power_ind,
y_high + max_power_ind,
spec.shape[0],
min_freq,
max_freq,
@ -120,7 +129,9 @@ def compute_max_power(
return np.nan
x_start = max(0, prediction["x_pos"])
x_end = min(spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"])
x_end = min(
spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"]
)
spec_call = spec[:, x_start:x_end]
power_per_freq_band = np.sum(spec_call, axis=1)
max_power_ind = np.argmax(power_per_freq_band)
@ -146,7 +157,9 @@ def compute_max_power_first(
return np.nan
x_start = max(0, prediction["x_pos"])
x_end = min(spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"])
x_end = min(
spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"]
)
spec_call = spec[:, x_start:x_end]
first_half = spec_call[:, : int(spec_call.shape[1] / 2)]
power_per_freq_band = np.sum(first_half, axis=1)
@ -173,7 +186,9 @@ def compute_max_power_second(
return np.nan
x_start = max(0, prediction["x_pos"])
x_end = min(spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"])
x_end = min(
spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"]
)
spec_call = spec[:, x_start:x_end]
second_half = spec_call[:, int(spec_call.shape[1] / 2) :]
power_per_freq_band = np.sum(second_half, axis=1)

View File

@ -1,9 +1,17 @@
"""Test suite for feature extraction functions."""
import logging
import librosa
import numpy as np
import pytest
import batdetect2.detector.compute_features as feats
from batdetect2 import types
from batdetect2 import api, types
from batdetect2.utils import audio_utils as au
numba_logger = logging.getLogger("numba")
numba_logger.setLevel(logging.WARNING)
def index_to_freq(
@ -29,6 +37,11 @@ def index_to_time(
def test_get_feats_function_with_empty_spectrogram():
"""Test get_feats function with empty spectrogram.
This tests that the overall flow of the function works, even if the
spectrogram is empty.
"""
spec_duration = 3
spec_width = 100
spec_height = 100
@ -43,12 +56,14 @@ def test_get_feats_function_with_empty_spectrogram():
start_time = index_to_time(x_pos, spec_width, spec_duration)
end_time = index_to_time(x_pos + bb_width, spec_width, spec_duration)
high_freq = index_to_freq(y_pos, spec_height, min_freq, max_freq)
low_freq = index_to_freq(y_pos + bb_height, spec_height, min_freq, max_freq)
low_freq = index_to_freq(y_pos, spec_height, min_freq, max_freq)
high_freq = index_to_freq(
y_pos - bb_height, spec_height, min_freq, max_freq
)
pred_nms: types.PredictionResults = {
"det_probs": np.array([1]),
"class_probs": np.array([1]),
"class_probs": np.array([[1]]),
"x_pos": np.array([x_pos]),
"y_pos": np.array([y_pos]),
"bb_width": np.array([bb_width]),
@ -76,7 +91,7 @@ def test_get_feats_function_with_empty_spectrogram():
low_freq,
high_freq,
high_freq - low_freq,
max_freq,
high_freq,
max_freq,
max_freq,
max_freq,
@ -85,3 +100,192 @@ def test_get_feats_function_with_empty_spectrogram():
),
equal_nan=True,
).all()
@pytest.mark.parametrize(
"max_power",
[
30_000,
31_000,
32_000,
33_000,
34_000,
35_000,
36_000,
37_000,
38_000,
39_000,
40_000,
],
)
def test_compute_max_power_bb(max_power: int):
"""Test compute_max_power_bb function."""
duration = 1
samplerate = 256_000
min_freq = 0
max_freq = 128_000
start_time = 0.3
end_time = 0.6
low_freq = 30_000
high_freq = 40_000
audio = np.zeros((int(duration * samplerate),))
# Add a signal during the time and frequency range of interest
audio[
int(start_time * samplerate) : int(end_time * samplerate)
] = 0.5 * librosa.tone(
max_power, sr=samplerate, duration=end_time - start_time
)
# Add a more powerful signal outside frequency range of interest
audio[
int(start_time * samplerate) : int(end_time * samplerate)
] += 2 * librosa.tone(
80_000, sr=samplerate, duration=end_time - start_time
)
params = api.get_config(
min_freq=min_freq,
max_freq=max_freq,
target_samp_rate=samplerate,
)
spec, _ = au.generate_spectrogram(
audio,
samplerate,
params,
)
x_start = int(
au.time_to_x_coords(
start_time,
samplerate,
params["fft_win_length"],
params["fft_overlap"],
)
)
x_end = int(
au.time_to_x_coords(
end_time,
samplerate,
params["fft_win_length"],
params["fft_overlap"],
)
)
num_freq_bins = spec.shape[0]
y_low = num_freq_bins - int(num_freq_bins * low_freq / max_freq)
y_high = num_freq_bins - int(num_freq_bins * high_freq / max_freq)
prediction: types.Prediction = {
"det_prob": 1,
"class_prob": np.ones((1,)),
"x_pos": x_start,
"y_pos": int(y_low),
"bb_width": int(x_end - x_start),
"bb_height": int(y_low - y_high),
"start_time": start_time,
"end_time": end_time,
"low_freq": low_freq,
"high_freq": high_freq,
}
print(prediction)
max_power_bb = feats.compute_max_power_bb(
prediction,
spec,
min_freq=min_freq,
max_freq=max_freq,
)
assert abs(max_power_bb - max_power) <= 500
def test_compute_max_power():
"""Test compute_max_power_bb function."""
duration = 3
samplerate = 16_000
min_freq = 0
max_freq = 8_000
start_time = 1
end_time = 2
low_freq = 3_000
high_freq = 4_000
max_power = 5_000
audio = np.zeros((int(duration * samplerate),))
# Add a signal during the time and frequency range of interest
audio[
int(start_time * samplerate) : int(end_time * samplerate)
] = 0.5 * librosa.tone(
3_500, sr=samplerate, duration=end_time - start_time
)
# Add a more powerful signal outside frequency range of interest
audio[
int(start_time * samplerate) : int(end_time * samplerate)
] += 2 * librosa.tone(
max_power, sr=samplerate, duration=end_time - start_time
)
params = api.get_config(
min_freq=min_freq,
max_freq=max_freq,
target_samp_rate=samplerate,
)
spec, _ = au.generate_spectrogram(
audio,
samplerate,
params,
)
x_start = int(
au.time_to_x_coords(
start_time,
samplerate,
params["fft_win_length"],
params["fft_overlap"],
)
)
x_end = int(
au.time_to_x_coords(
end_time,
samplerate,
params["fft_win_length"],
params["fft_overlap"],
)
)
num_freq_bins = spec.shape[0]
y_low = int(num_freq_bins * low_freq / max_freq)
y_high = int(num_freq_bins * high_freq / max_freq)
prediction: types.Prediction = {
"det_prob": 1,
"class_prob": np.ones((1,)),
"x_pos": x_start,
"y_pos": int(y_high),
"bb_width": int(x_end - x_start),
"bb_height": int(y_high - y_low),
"start_time": start_time,
"end_time": end_time,
"low_freq": low_freq,
"high_freq": high_freq,
}
computed_max_power = feats.compute_max_power(
prediction,
spec,
min_freq=min_freq,
max_freq=max_freq,
)
assert abs(computed_max_power - max_power) < 100