mirror of
https://github.com/macaodha/batdetect2.git
synced 2026-01-10 17:19:34 +01:00
Make sure preprocessing is batchable
This commit is contained in:
parent
0b5ac96fe8
commit
34ef9e92a1
@ -26,19 +26,32 @@ def create_ax(
|
|||||||
|
|
||||||
def plot_spectrogram(
|
def plot_spectrogram(
|
||||||
spec: Union[torch.Tensor, np.ndarray],
|
spec: Union[torch.Tensor, np.ndarray],
|
||||||
start_time: float,
|
start_time: Optional[float] = None,
|
||||||
end_time: float,
|
end_time: Optional[float] = None,
|
||||||
min_freq: float,
|
min_freq: Optional[float] = None,
|
||||||
max_freq: float,
|
max_freq: Optional[float] = None,
|
||||||
ax: Optional[axes.Axes] = None,
|
ax: Optional[axes.Axes] = None,
|
||||||
figsize: Optional[Tuple[int, int]] = None,
|
figsize: Optional[Tuple[int, int]] = None,
|
||||||
cmap="gray",
|
cmap="gray",
|
||||||
) -> axes.Axes:
|
) -> axes.Axes:
|
||||||
|
|
||||||
if isinstance(spec, torch.Tensor):
|
if isinstance(spec, torch.Tensor):
|
||||||
spec = spec.numpy()
|
spec = spec.numpy()
|
||||||
|
|
||||||
ax = create_ax(ax=ax, figsize=figsize)
|
ax = create_ax(ax=ax, figsize=figsize)
|
||||||
|
|
||||||
|
if start_time is None:
|
||||||
|
start_time = 0
|
||||||
|
|
||||||
|
if end_time is None:
|
||||||
|
end_time = spec.shape[-1]
|
||||||
|
|
||||||
|
if min_freq is None:
|
||||||
|
min_freq = 0
|
||||||
|
|
||||||
|
if max_freq is None:
|
||||||
|
max_freq = spec.shape[-2]
|
||||||
|
|
||||||
ax.pcolormesh(
|
ax.pcolormesh(
|
||||||
np.linspace(start_time, end_time, spec.shape[-1] + 1, endpoint=True),
|
np.linspace(start_time, end_time, spec.shape[-1] + 1, endpoint=True),
|
||||||
np.linspace(min_freq, max_freq, spec.shape[-2] + 1, endpoint=True),
|
np.linspace(min_freq, max_freq, spec.shape[-2] + 1, endpoint=True),
|
||||||
|
|||||||
@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
from typing import List, Optional
|
from typing import List, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
from pydantic import Field
|
from pydantic import Field
|
||||||
from soundevent import data
|
from soundevent import data
|
||||||
@ -20,13 +21,15 @@ from batdetect2.postprocess.nms import (
|
|||||||
)
|
)
|
||||||
from batdetect2.postprocess.remapping import map_detection_to_clip
|
from batdetect2.postprocess.remapping import map_detection_to_clip
|
||||||
from batdetect2.preprocess import MAX_FREQ, MIN_FREQ
|
from batdetect2.preprocess import MAX_FREQ, MIN_FREQ
|
||||||
from batdetect2.typing import ModelOutput, PreprocessorProtocol, TargetProtocol
|
from batdetect2.typing import ModelOutput
|
||||||
from batdetect2.typing.postprocess import (
|
from batdetect2.typing.postprocess import (
|
||||||
BatDetect2Prediction,
|
BatDetect2Prediction,
|
||||||
Detections,
|
Detections,
|
||||||
PostprocessorProtocol,
|
PostprocessorProtocol,
|
||||||
RawPrediction,
|
RawPrediction,
|
||||||
)
|
)
|
||||||
|
from batdetect2.typing.preprocess import PreprocessorProtocol
|
||||||
|
from batdetect2.typing.targets import TargetProtocol
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"DEFAULT_CLASSIFICATION_THRESHOLD",
|
"DEFAULT_CLASSIFICATION_THRESHOLD",
|
||||||
@ -128,7 +131,6 @@ def load_postprocess_config(
|
|||||||
|
|
||||||
|
|
||||||
def build_postprocessor(
|
def build_postprocessor(
|
||||||
targets: TargetProtocol,
|
|
||||||
preprocessor: PreprocessorProtocol,
|
preprocessor: PreprocessorProtocol,
|
||||||
config: Optional[PostprocessConfig] = None,
|
config: Optional[PostprocessConfig] = None,
|
||||||
) -> PostprocessorProtocol:
|
) -> PostprocessorProtocol:
|
||||||
@ -139,29 +141,52 @@ def build_postprocessor(
|
|||||||
lambda: config.to_yaml_string(),
|
lambda: config.to_yaml_string(),
|
||||||
)
|
)
|
||||||
return Postprocessor(
|
return Postprocessor(
|
||||||
targets=targets,
|
samplerate=preprocessor.output_samplerate,
|
||||||
preprocessor=preprocessor,
|
min_freq=preprocessor.min_freq,
|
||||||
config=config,
|
max_freq=preprocessor.max_freq,
|
||||||
|
top_k_per_sec=config.top_k_per_sec,
|
||||||
|
detection_threshold=config.detection_threshold,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class Postprocessor(PostprocessorProtocol):
|
class Postprocessor(torch.nn.Module, PostprocessorProtocol):
|
||||||
"""Standard implementation of the postprocessing pipeline."""
|
"""Standard implementation of the postprocessing pipeline."""
|
||||||
|
|
||||||
targets: TargetProtocol
|
|
||||||
|
|
||||||
preprocessor: PreprocessorProtocol
|
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
targets: TargetProtocol,
|
samplerate: float,
|
||||||
preprocessor: PreprocessorProtocol,
|
min_freq: float,
|
||||||
config: PostprocessConfig,
|
max_freq: float,
|
||||||
|
top_k_per_sec: int = 200,
|
||||||
|
detection_threshold: float = 0.01,
|
||||||
):
|
):
|
||||||
"""Initialize the Postprocessor."""
|
"""Initialize the Postprocessor."""
|
||||||
self.targets = targets
|
super().__init__()
|
||||||
self.preprocessor = preprocessor
|
self.samplerate = samplerate
|
||||||
self.config = config
|
self.min_freq = min_freq
|
||||||
|
self.max_freq = max_freq
|
||||||
|
self.top_k_per_sec = top_k_per_sec
|
||||||
|
self.detection_threshold = detection_threshold
|
||||||
|
|
||||||
|
def forward(self, output: ModelOutput) -> List[Detections]:
|
||||||
|
width = output.detection_probs.shape[-1]
|
||||||
|
duration = width / self.samplerate
|
||||||
|
max_detections = int(self.top_k_per_sec * duration)
|
||||||
|
detections = extract_prediction_tensor(
|
||||||
|
output,
|
||||||
|
max_detections=max_detections,
|
||||||
|
threshold=self.detection_threshold,
|
||||||
|
)
|
||||||
|
return [
|
||||||
|
map_detection_to_clip(
|
||||||
|
detection,
|
||||||
|
start_time=0,
|
||||||
|
end_time=duration,
|
||||||
|
min_freq=self.min_freq,
|
||||||
|
max_freq=self.max_freq,
|
||||||
|
)
|
||||||
|
for detection in detections
|
||||||
|
]
|
||||||
|
|
||||||
def get_detections(
|
def get_detections(
|
||||||
self,
|
self,
|
||||||
@ -169,13 +194,13 @@ class Postprocessor(PostprocessorProtocol):
|
|||||||
clips: Optional[List[data.Clip]] = None,
|
clips: Optional[List[data.Clip]] = None,
|
||||||
) -> List[Detections]:
|
) -> List[Detections]:
|
||||||
width = output.detection_probs.shape[-1]
|
width = output.detection_probs.shape[-1]
|
||||||
duration = width / self.preprocessor.output_samplerate
|
duration = width / self.samplerate
|
||||||
max_detections = int(self.config.top_k_per_sec * duration)
|
max_detections = int(self.top_k_per_sec * duration)
|
||||||
|
|
||||||
detections = extract_prediction_tensor(
|
detections = extract_prediction_tensor(
|
||||||
output,
|
output,
|
||||||
max_detections=max_detections,
|
max_detections=max_detections,
|
||||||
threshold=self.config.detection_threshold,
|
threshold=self.detection_threshold,
|
||||||
)
|
)
|
||||||
|
|
||||||
if clips is None:
|
if clips is None:
|
||||||
@ -186,96 +211,116 @@ class Postprocessor(PostprocessorProtocol):
|
|||||||
detection,
|
detection,
|
||||||
start_time=clip.start_time,
|
start_time=clip.start_time,
|
||||||
end_time=clip.end_time,
|
end_time=clip.end_time,
|
||||||
min_freq=self.preprocessor.min_freq,
|
min_freq=self.min_freq,
|
||||||
max_freq=self.preprocessor.max_freq,
|
max_freq=self.max_freq,
|
||||||
)
|
)
|
||||||
for detection, clip in zip(detections, clips)
|
for detection, clip in zip(detections, clips)
|
||||||
]
|
]
|
||||||
|
|
||||||
def get_raw_predictions(
|
|
||||||
self,
|
|
||||||
output: ModelOutput,
|
|
||||||
clips: List[data.Clip],
|
|
||||||
) -> List[List[RawPrediction]]:
|
|
||||||
"""Extract intermediate RawPrediction objects for a batch.
|
|
||||||
|
|
||||||
Processes raw model output through remapping, NMS, detection, data
|
def get_raw_predictions(
|
||||||
extraction, and geometry recovery via the configured
|
output: ModelOutput,
|
||||||
`targets.recover_roi`.
|
clips: List[data.Clip],
|
||||||
|
targets: TargetProtocol,
|
||||||
|
postprocessor: PostprocessorProtocol,
|
||||||
|
) -> List[List[RawPrediction]]:
|
||||||
|
"""Extract intermediate RawPrediction objects for a batch.
|
||||||
|
|
||||||
Parameters
|
Processes raw model output through remapping, NMS, detection, data
|
||||||
----------
|
extraction, and geometry recovery via the configured
|
||||||
output : ModelOutput
|
`targets.recover_roi`.
|
||||||
Raw output from the neural network model for a batch.
|
|
||||||
clips : List[data.Clip]
|
|
||||||
List of `soundevent.data.Clip` objects corresponding to the batch.
|
|
||||||
|
|
||||||
Returns
|
Parameters
|
||||||
-------
|
----------
|
||||||
List[List[RawPrediction]]
|
output : ModelOutput
|
||||||
List of lists (one inner list per input clip). Each inner list
|
Raw output from the neural network model for a batch.
|
||||||
contains `RawPrediction` objects for detections in that clip.
|
clips : List[data.Clip]
|
||||||
"""
|
List of `soundevent.data.Clip` objects corresponding to the batch.
|
||||||
detections = self.get_detections(output, clips)
|
|
||||||
return [
|
Returns
|
||||||
convert_detections_to_raw_predictions(
|
-------
|
||||||
dataset,
|
List[List[RawPrediction]]
|
||||||
targets=self.targets,
|
List of lists (one inner list per input clip). Each inner list
|
||||||
|
contains `RawPrediction` objects for detections in that clip.
|
||||||
|
"""
|
||||||
|
detections = postprocessor.get_detections(output, clips)
|
||||||
|
return [
|
||||||
|
convert_detections_to_raw_predictions(
|
||||||
|
dataset,
|
||||||
|
targets=targets,
|
||||||
|
)
|
||||||
|
for dataset in detections
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def get_sound_event_predictions(
|
||||||
|
output: ModelOutput,
|
||||||
|
clips: List[data.Clip],
|
||||||
|
targets: TargetProtocol,
|
||||||
|
postprocessor: PostprocessorProtocol,
|
||||||
|
classification_threshold: float = DEFAULT_CLASSIFICATION_THRESHOLD,
|
||||||
|
) -> List[List[BatDetect2Prediction]]:
|
||||||
|
raw_predictions = get_raw_predictions(
|
||||||
|
output,
|
||||||
|
clips,
|
||||||
|
targets=targets,
|
||||||
|
postprocessor=postprocessor,
|
||||||
|
)
|
||||||
|
return [
|
||||||
|
[
|
||||||
|
BatDetect2Prediction(
|
||||||
|
raw=raw,
|
||||||
|
sound_event_prediction=convert_raw_prediction_to_sound_event_prediction(
|
||||||
|
raw,
|
||||||
|
recording=clip.recording,
|
||||||
|
targets=targets,
|
||||||
|
classification_threshold=classification_threshold,
|
||||||
|
),
|
||||||
)
|
)
|
||||||
for dataset in detections
|
for raw in predictions
|
||||||
]
|
]
|
||||||
|
for predictions, clip in zip(raw_predictions, clips)
|
||||||
|
]
|
||||||
|
|
||||||
def get_sound_event_predictions(
|
|
||||||
self,
|
|
||||||
output: ModelOutput,
|
|
||||||
clips: List[data.Clip],
|
|
||||||
) -> List[List[BatDetect2Prediction]]:
|
|
||||||
raw_predictions = self.get_raw_predictions(output, clips)
|
|
||||||
return [
|
|
||||||
[
|
|
||||||
BatDetect2Prediction(
|
|
||||||
raw=raw,
|
|
||||||
sound_event_prediction=convert_raw_prediction_to_sound_event_prediction(
|
|
||||||
raw,
|
|
||||||
recording=clip.recording,
|
|
||||||
targets=self.targets,
|
|
||||||
classification_threshold=self.config.classification_threshold,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
for raw in predictions
|
|
||||||
]
|
|
||||||
for predictions, clip in zip(raw_predictions, clips)
|
|
||||||
]
|
|
||||||
|
|
||||||
def get_predictions(
|
def get_predictions(
|
||||||
self, output: ModelOutput, clips: List[data.Clip]
|
output: ModelOutput,
|
||||||
) -> List[data.ClipPrediction]:
|
clips: List[data.Clip],
|
||||||
"""Perform the full postprocessing pipeline for a batch.
|
targets: TargetProtocol,
|
||||||
|
postprocessor: PostprocessorProtocol,
|
||||||
|
classification_threshold: float = DEFAULT_CLASSIFICATION_THRESHOLD,
|
||||||
|
) -> List[data.ClipPrediction]:
|
||||||
|
"""Perform the full postprocessing pipeline for a batch.
|
||||||
|
|
||||||
Takes raw model output and corresponding clips, applies the entire
|
Takes raw model output and corresponding clips, applies the entire
|
||||||
configured chain (NMS, remapping, extraction, geometry recovery, class
|
configured chain (NMS, remapping, extraction, geometry recovery, class
|
||||||
decoding), producing final `soundevent.data.ClipPrediction` objects.
|
decoding), producing final `soundevent.data.ClipPrediction` objects.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
output : ModelOutput
|
output : ModelOutput
|
||||||
Raw output from the neural network model for a batch.
|
Raw output from the neural network model for a batch.
|
||||||
clips : List[data.Clip]
|
clips : List[data.Clip]
|
||||||
List of `soundevent.data.Clip` objects corresponding to the batch.
|
List of `soundevent.data.Clip` objects corresponding to the batch.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
List[data.ClipPrediction]
|
List[data.ClipPrediction]
|
||||||
List containing one `ClipPrediction` object for each input clip,
|
List containing one `ClipPrediction` object for each input clip,
|
||||||
populated with `SoundEventPrediction` objects.
|
populated with `SoundEventPrediction` objects.
|
||||||
"""
|
"""
|
||||||
raw_predictions = self.get_raw_predictions(output, clips)
|
raw_predictions = get_raw_predictions(
|
||||||
return [
|
output,
|
||||||
convert_raw_predictions_to_clip_prediction(
|
clips,
|
||||||
prediction,
|
targets=targets,
|
||||||
clip,
|
postprocessor=postprocessor,
|
||||||
targets=self.targets,
|
)
|
||||||
classification_threshold=self.config.classification_threshold,
|
return [
|
||||||
)
|
convert_raw_predictions_to_clip_prediction(
|
||||||
for prediction, clip in zip(raw_predictions, clips)
|
prediction,
|
||||||
]
|
clip,
|
||||||
|
targets=targets,
|
||||||
|
classification_threshold=classification_threshold,
|
||||||
|
)
|
||||||
|
for prediction, clip in zip(raw_predictions, clips)
|
||||||
|
]
|
||||||
|
|||||||
@ -139,7 +139,21 @@ class FrequencyClip(torch.nn.Module):
|
|||||||
self.high_index = high_index
|
self.high_index = high_index
|
||||||
|
|
||||||
def forward(self, spec: torch.Tensor) -> torch.Tensor:
|
def forward(self, spec: torch.Tensor) -> torch.Tensor:
|
||||||
return spec[self.low_index : self.high_index]
|
low_index = self.low_index
|
||||||
|
if low_index is None:
|
||||||
|
low_index = 0
|
||||||
|
|
||||||
|
if self.high_index is None:
|
||||||
|
length = spec.shape[-2] - low_index
|
||||||
|
else:
|
||||||
|
length = self.high_index - low_index
|
||||||
|
|
||||||
|
return torch.narrow(
|
||||||
|
spec,
|
||||||
|
dim=-2,
|
||||||
|
start=low_index,
|
||||||
|
length=length,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class PcenConfig(BaseConfig):
|
class PcenConfig(BaseConfig):
|
||||||
@ -256,16 +270,22 @@ class ResizeSpec(torch.nn.Module):
|
|||||||
def forward(self, spec: torch.Tensor) -> torch.Tensor:
|
def forward(self, spec: torch.Tensor) -> torch.Tensor:
|
||||||
current_length = spec.shape[-1]
|
current_length = spec.shape[-1]
|
||||||
target_length = int(self.time_factor * current_length)
|
target_length = int(self.time_factor * current_length)
|
||||||
return (
|
|
||||||
torch.nn.functional.interpolate(
|
original_ndim = spec.ndim
|
||||||
spec.unsqueeze(0).unsqueeze(0),
|
while spec.ndim < 4:
|
||||||
size=(self.height, target_length),
|
spec = spec.unsqueeze(0)
|
||||||
mode="bilinear",
|
|
||||||
)
|
resized = torch.nn.functional.interpolate(
|
||||||
.squeeze(0)
|
spec,
|
||||||
.squeeze(0)
|
size=(self.height, target_length),
|
||||||
|
mode="bilinear",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
while resized.ndim != original_ndim:
|
||||||
|
resized = resized.squeeze(0)
|
||||||
|
|
||||||
|
return resized
|
||||||
|
|
||||||
|
|
||||||
class PeakNormalizeConfig(BaseConfig):
|
class PeakNormalizeConfig(BaseConfig):
|
||||||
name: Literal["peak_normalize"] = "peak_normalize"
|
name: Literal["peak_normalize"] = "peak_normalize"
|
||||||
|
|||||||
@ -2,6 +2,7 @@ from batdetect2.train.augmentations import (
|
|||||||
AugmentationsConfig,
|
AugmentationsConfig,
|
||||||
EchoAugmentationConfig,
|
EchoAugmentationConfig,
|
||||||
FrequencyMaskAugmentationConfig,
|
FrequencyMaskAugmentationConfig,
|
||||||
|
RandomExampleSource,
|
||||||
TimeMaskAugmentationConfig,
|
TimeMaskAugmentationConfig,
|
||||||
VolumeAugmentationConfig,
|
VolumeAugmentationConfig,
|
||||||
WarpAugmentationConfig,
|
WarpAugmentationConfig,
|
||||||
@ -23,7 +24,6 @@ from batdetect2.train.config import (
|
|||||||
)
|
)
|
||||||
from batdetect2.train.dataset import (
|
from batdetect2.train.dataset import (
|
||||||
LabeledDataset,
|
LabeledDataset,
|
||||||
RandomExampleSource,
|
|
||||||
list_preprocessed_files,
|
list_preprocessed_files,
|
||||||
)
|
)
|
||||||
from batdetect2.train.labels import build_clip_labeler, load_label_config
|
from batdetect2.train.labels import build_clip_labeler, load_label_config
|
||||||
|
|||||||
@ -1,6 +1,7 @@
|
|||||||
"""Applies data augmentation techniques to BatDetect2 training examples."""
|
"""Applies data augmentation techniques to BatDetect2 training examples."""
|
||||||
|
|
||||||
import warnings
|
import warnings
|
||||||
|
from collections.abc import Sequence
|
||||||
from typing import Annotated, Callable, List, Literal, Optional, Tuple, Union
|
from typing import Annotated, Callable, List, Literal, Optional, Tuple, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -10,8 +11,12 @@ from pydantic import Field
|
|||||||
from soundevent import data
|
from soundevent import data
|
||||||
|
|
||||||
from batdetect2.configs import BaseConfig, load_config
|
from batdetect2.configs import BaseConfig, load_config
|
||||||
|
from batdetect2.train.preprocess import (
|
||||||
|
list_preprocessed_files,
|
||||||
|
load_preprocessed_example,
|
||||||
|
)
|
||||||
from batdetect2.typing import Augmentation, PreprocessorProtocol
|
from batdetect2.typing import Augmentation, PreprocessorProtocol
|
||||||
from batdetect2.typing.train import PreprocessedExample
|
from batdetect2.typing.train import ClipperProtocol, PreprocessedExample
|
||||||
from batdetect2.utils.arrays import adjust_width
|
from batdetect2.utils.arrays import adjust_width
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
@ -39,21 +44,6 @@ ExampleSource = Callable[[], PreprocessedExample]
|
|||||||
"""Type alias for a function that returns a training example"""
|
"""Type alias for a function that returns a training example"""
|
||||||
|
|
||||||
|
|
||||||
class MixAugmentationConfig(BaseConfig):
|
|
||||||
"""Configuration for MixUp augmentation (mixing two examples)."""
|
|
||||||
|
|
||||||
augmentation_type: Literal["mix_audio"] = "mix_audio"
|
|
||||||
|
|
||||||
probability: float = 0.2
|
|
||||||
"""Probability of applying this augmentation to an example."""
|
|
||||||
|
|
||||||
min_weight: float = 0.3
|
|
||||||
"""Minimum mixing weight (lambda) applied to the primary example."""
|
|
||||||
|
|
||||||
max_weight: float = 0.7
|
|
||||||
"""Maximum mixing weight (lambda) applied to the primary example."""
|
|
||||||
|
|
||||||
|
|
||||||
def mix_examples(
|
def mix_examples(
|
||||||
example: PreprocessedExample,
|
example: PreprocessedExample,
|
||||||
other: PreprocessedExample,
|
other: PreprocessedExample,
|
||||||
@ -149,7 +139,12 @@ def add_echo(
|
|||||||
|
|
||||||
audio = example.audio
|
audio = example.audio
|
||||||
delay_steps = int(preprocessor.input_samplerate * delay)
|
delay_steps = int(preprocessor.input_samplerate * delay)
|
||||||
audio_delay = adjust_width(audio[delay_steps:], audio.shape[-1])
|
|
||||||
|
slices = [slice(None)] * audio.ndim
|
||||||
|
slices[-1] = slice(None, -delay_steps)
|
||||||
|
audio_delay = adjust_width(audio[tuple(slices)], audio.shape[-1]).roll(
|
||||||
|
delay_steps, dims=-1
|
||||||
|
)
|
||||||
|
|
||||||
audio = audio + weight * audio_delay
|
audio = audio + weight * audio_delay
|
||||||
spectrogram = preprocessor(audio)
|
spectrogram = preprocessor(audio)
|
||||||
@ -184,7 +179,7 @@ class VolumeAugmentationConfig(BaseConfig):
|
|||||||
|
|
||||||
|
|
||||||
class ScaleVolume(torch.nn.Module):
|
class ScaleVolume(torch.nn.Module):
|
||||||
def __init__(self, min_scaling: float, max_scaling: float):
|
def __init__(self, min_scaling: float = 0.0, max_scaling: float = 2.0):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.min_scaling = min_scaling
|
self.min_scaling = min_scaling
|
||||||
self.max_scaling = max_scaling
|
self.max_scaling = max_scaling
|
||||||
@ -228,32 +223,22 @@ def warp_spectrogram(
|
|||||||
example: PreprocessedExample, factor: float
|
example: PreprocessedExample, factor: float
|
||||||
) -> PreprocessedExample:
|
) -> PreprocessedExample:
|
||||||
"""Apply time warping by resampling the time axis."""
|
"""Apply time warping by resampling the time axis."""
|
||||||
target_shape = example.spectrogram.shape
|
width = example.spectrogram.shape[-1]
|
||||||
|
height = example.spectrogram.shape[-2]
|
||||||
|
target_shape = [height, width]
|
||||||
new_width = int(target_shape[-1] * factor)
|
new_width = int(target_shape[-1] * factor)
|
||||||
|
|
||||||
spectrogram = (
|
spectrogram = torch.nn.functional.interpolate(
|
||||||
torch.nn.functional.interpolate(
|
adjust_width(example.spectrogram, new_width).unsqueeze(0),
|
||||||
adjust_width(example.spectrogram, new_width)
|
size=target_shape,
|
||||||
.unsqueeze(0)
|
mode="bilinear",
|
||||||
.unsqueeze(0),
|
).squeeze(0)
|
||||||
size=target_shape,
|
|
||||||
mode="bilinear",
|
|
||||||
)
|
|
||||||
.squeeze(0)
|
|
||||||
.squeeze(0)
|
|
||||||
)
|
|
||||||
|
|
||||||
detection = (
|
detection = torch.nn.functional.interpolate(
|
||||||
torch.nn.functional.interpolate(
|
adjust_width(example.detection_heatmap, new_width).unsqueeze(0),
|
||||||
adjust_width(example.detection_heatmap, new_width)
|
size=target_shape,
|
||||||
.unsqueeze(0)
|
mode="nearest",
|
||||||
.unsqueeze(0),
|
).squeeze(0)
|
||||||
size=target_shape,
|
|
||||||
mode="nearest",
|
|
||||||
)
|
|
||||||
.squeeze(0)
|
|
||||||
.squeeze(0)
|
|
||||||
)
|
|
||||||
|
|
||||||
classification = torch.nn.functional.interpolate(
|
classification = torch.nn.functional.interpolate(
|
||||||
adjust_width(example.class_heatmap, new_width).unsqueeze(1),
|
adjust_width(example.class_heatmap, new_width).unsqueeze(1),
|
||||||
@ -284,10 +269,16 @@ class TimeMaskAugmentationConfig(BaseConfig):
|
|||||||
|
|
||||||
|
|
||||||
class MaskTime(torch.nn.Module):
|
class MaskTime(torch.nn.Module):
|
||||||
def __init__(self, max_perc: float = 0.05, max_masks: int = 3) -> None:
|
def __init__(
|
||||||
|
self,
|
||||||
|
max_perc: float = 0.05,
|
||||||
|
max_masks: int = 3,
|
||||||
|
mask_heatmaps: bool = False,
|
||||||
|
) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.max_perc = max_perc
|
self.max_perc = max_perc
|
||||||
self.max_masks = max_masks
|
self.max_masks = max_masks
|
||||||
|
self.mask_heatmaps = mask_heatmaps
|
||||||
|
|
||||||
def forward(self, example: PreprocessedExample) -> PreprocessedExample:
|
def forward(self, example: PreprocessedExample) -> PreprocessedExample:
|
||||||
num_masks = np.random.randint(1, self.max_masks + 1)
|
num_masks = np.random.randint(1, self.max_masks + 1)
|
||||||
@ -306,20 +297,28 @@ class MaskTime(torch.nn.Module):
|
|||||||
masks = [
|
masks = [
|
||||||
(start, start + size) for start, size in zip(mask_start, mask_size)
|
(start, start + size) for start, size in zip(mask_start, mask_size)
|
||||||
]
|
]
|
||||||
return mask_time(example, masks)
|
return mask_time(example, masks, mask_heatmaps=self.mask_heatmaps)
|
||||||
|
|
||||||
|
|
||||||
def mask_time(
|
def mask_time(
|
||||||
example: PreprocessedExample,
|
example: PreprocessedExample,
|
||||||
masks: List[Tuple[int, int]],
|
masks: List[Tuple[int, int]],
|
||||||
|
mask_heatmaps: bool = False,
|
||||||
) -> PreprocessedExample:
|
) -> PreprocessedExample:
|
||||||
"""Apply time masking to the spectrogram."""
|
"""Apply time masking to the spectrogram."""
|
||||||
|
|
||||||
for start, end in masks:
|
for start, end in masks:
|
||||||
example.spectrogram[:, start:end] = example.spectrogram.mean()
|
slices = [slice(None)] * example.spectrogram.ndim
|
||||||
example.class_heatmap[:, :, start:end] = 0
|
slices[-1] = slice(start, end)
|
||||||
example.size_heatmap[:, :, start:end] = 0
|
|
||||||
example.detection_heatmap[:, start:end] = 0
|
example.spectrogram[tuple(slices)] = 0
|
||||||
|
|
||||||
|
if not mask_heatmaps:
|
||||||
|
continue
|
||||||
|
|
||||||
|
example.class_heatmap[tuple(slices)] = 0
|
||||||
|
example.size_heatmap[tuple(slices)] = 0
|
||||||
|
example.detection_heatmap[tuple(slices)] = 0
|
||||||
|
|
||||||
return PreprocessedExample(
|
return PreprocessedExample(
|
||||||
audio=example.audio,
|
audio=example.audio,
|
||||||
@ -335,13 +334,20 @@ class FrequencyMaskAugmentationConfig(BaseConfig):
|
|||||||
probability: float = 0.2
|
probability: float = 0.2
|
||||||
max_perc: float = 0.10
|
max_perc: float = 0.10
|
||||||
max_masks: int = 3
|
max_masks: int = 3
|
||||||
|
mask_heatmaps: bool = False
|
||||||
|
|
||||||
|
|
||||||
class MaskFrequency(torch.nn.Module):
|
class MaskFrequency(torch.nn.Module):
|
||||||
def __init__(self, max_perc: float = 0.10, max_masks: int = 3) -> None:
|
def __init__(
|
||||||
|
self,
|
||||||
|
max_perc: float = 0.10,
|
||||||
|
max_masks: int = 3,
|
||||||
|
mask_heatmaps: bool = False,
|
||||||
|
) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.max_perc = max_perc
|
self.max_perc = max_perc
|
||||||
self.max_masks = max_masks
|
self.max_masks = max_masks
|
||||||
|
self.mask_heatmaps = mask_heatmaps
|
||||||
|
|
||||||
def forward(self, example: PreprocessedExample) -> PreprocessedExample:
|
def forward(self, example: PreprocessedExample) -> PreprocessedExample:
|
||||||
num_masks = np.random.randint(1, self.max_masks + 1)
|
num_masks = np.random.randint(1, self.max_masks + 1)
|
||||||
@ -360,19 +366,26 @@ class MaskFrequency(torch.nn.Module):
|
|||||||
masks = [
|
masks = [
|
||||||
(start, start + size) for start, size in zip(mask_start, mask_size)
|
(start, start + size) for start, size in zip(mask_start, mask_size)
|
||||||
]
|
]
|
||||||
return mask_frequency(example, masks)
|
return mask_frequency(example, masks, mask_heatmaps=self.mask_heatmaps)
|
||||||
|
|
||||||
|
|
||||||
def mask_frequency(
|
def mask_frequency(
|
||||||
example: PreprocessedExample,
|
example: PreprocessedExample,
|
||||||
masks: List[Tuple[int, int]],
|
masks: List[Tuple[int, int]],
|
||||||
|
mask_heatmaps: bool = False,
|
||||||
) -> PreprocessedExample:
|
) -> PreprocessedExample:
|
||||||
"""Apply frequency masking to the spectrogram."""
|
"""Apply frequency masking to the spectrogram."""
|
||||||
for start, end in masks:
|
for start, end in masks:
|
||||||
example.spectrogram[start:end, :] = example.spectrogram.mean()
|
slices = [slice(None)] * example.spectrogram.ndim
|
||||||
example.class_heatmap[:, start:end, :] = 0
|
slices[-2] = slice(start, end)
|
||||||
example.size_heatmap[:, start:end, :] = 0
|
example.spectrogram[tuple(slices)] = 0
|
||||||
example.detection_heatmap[start:end, :] = 0
|
|
||||||
|
if not mask_heatmaps:
|
||||||
|
continue
|
||||||
|
|
||||||
|
example.class_heatmap[tuple(slices)] = 0
|
||||||
|
example.size_heatmap[tuple(slices)] = 0
|
||||||
|
example.detection_heatmap[tuple(slices)] = 0
|
||||||
|
|
||||||
return PreprocessedExample(
|
return PreprocessedExample(
|
||||||
audio=example.audio,
|
audio=example.audio,
|
||||||
@ -383,6 +396,50 @@ def mask_frequency(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class MixAugmentationConfig(BaseConfig):
|
||||||
|
"""Configuration for MixUp augmentation (mixing two examples)."""
|
||||||
|
|
||||||
|
augmentation_type: Literal["mix_audio"] = "mix_audio"
|
||||||
|
|
||||||
|
probability: float = 0.2
|
||||||
|
"""Probability of applying this augmentation to an example."""
|
||||||
|
|
||||||
|
min_weight: float = 0.3
|
||||||
|
"""Minimum mixing weight (lambda) applied to the primary example."""
|
||||||
|
|
||||||
|
max_weight: float = 0.7
|
||||||
|
"""Maximum mixing weight (lambda) applied to the primary example."""
|
||||||
|
|
||||||
|
|
||||||
|
class MixAudio(torch.nn.Module):
|
||||||
|
"""Callable class for MixUp augmentation, handling example fetching."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
example_source: ExampleSource,
|
||||||
|
preprocessor: PreprocessorProtocol,
|
||||||
|
min_weight: float = 0.3,
|
||||||
|
max_weight: float = 0.7,
|
||||||
|
):
|
||||||
|
"""Initialize the AudioMixer."""
|
||||||
|
super().__init__()
|
||||||
|
self.min_weight = min_weight
|
||||||
|
self.example_source = example_source
|
||||||
|
self.max_weight = max_weight
|
||||||
|
self.preprocessor = preprocessor
|
||||||
|
|
||||||
|
def __call__(self, example: PreprocessedExample) -> PreprocessedExample:
|
||||||
|
"""Fetch another example and perform mixup."""
|
||||||
|
other = self.example_source()
|
||||||
|
weight = np.random.uniform(self.min_weight, self.max_weight)
|
||||||
|
return mix_examples(
|
||||||
|
example,
|
||||||
|
other,
|
||||||
|
self.preprocessor,
|
||||||
|
weight=weight,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
AugmentationConfig = Annotated[
|
AugmentationConfig = Annotated[
|
||||||
Union[
|
Union[
|
||||||
MixAugmentationConfig,
|
MixAugmentationConfig,
|
||||||
@ -445,35 +502,6 @@ class MaybeApply(torch.nn.Module):
|
|||||||
return self.augmentation(example)
|
return self.augmentation(example)
|
||||||
|
|
||||||
|
|
||||||
class AudioMixer(torch.nn.Module):
|
|
||||||
"""Callable class for MixUp augmentation, handling example fetching."""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
min_weight: float,
|
|
||||||
max_weight: float,
|
|
||||||
example_source: ExampleSource,
|
|
||||||
preprocessor: PreprocessorProtocol,
|
|
||||||
):
|
|
||||||
"""Initialize the AudioMixer."""
|
|
||||||
super().__init__()
|
|
||||||
self.min_weight = min_weight
|
|
||||||
self.example_source = example_source
|
|
||||||
self.max_weight = max_weight
|
|
||||||
self.preprocessor = preprocessor
|
|
||||||
|
|
||||||
def __call__(self, example: PreprocessedExample) -> PreprocessedExample:
|
|
||||||
"""Fetch another example and perform mixup."""
|
|
||||||
other = self.example_source()
|
|
||||||
weight = np.random.uniform(self.min_weight, self.max_weight)
|
|
||||||
return mix_examples(
|
|
||||||
example,
|
|
||||||
other,
|
|
||||||
self.preprocessor,
|
|
||||||
weight=weight,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def build_augmentation_from_config(
|
def build_augmentation_from_config(
|
||||||
config: AugmentationConfig,
|
config: AugmentationConfig,
|
||||||
preprocessor: PreprocessorProtocol,
|
preprocessor: PreprocessorProtocol,
|
||||||
@ -489,7 +517,7 @@ def build_augmentation_from_config(
|
|||||||
)
|
)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
return AudioMixer(
|
return MixAudio(
|
||||||
example_source=example_source,
|
example_source=example_source,
|
||||||
preprocessor=preprocessor,
|
preprocessor=preprocessor,
|
||||||
min_weight=config.min_weight,
|
min_weight=config.min_weight,
|
||||||
@ -585,3 +613,25 @@ def load_augmentation_config(
|
|||||||
) -> AugmentationsConfig:
|
) -> AugmentationsConfig:
|
||||||
"""Load the augmentations configuration from a file."""
|
"""Load the augmentations configuration from a file."""
|
||||||
return load_config(path, schema=AugmentationsConfig, field=field)
|
return load_config(path, schema=AugmentationsConfig, field=field)
|
||||||
|
|
||||||
|
|
||||||
|
class RandomExampleSource:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
filenames: Sequence[data.PathLike],
|
||||||
|
clipper: ClipperProtocol,
|
||||||
|
):
|
||||||
|
self.filenames = filenames
|
||||||
|
self.clipper = clipper
|
||||||
|
|
||||||
|
def __call__(self) -> PreprocessedExample:
|
||||||
|
index = int(np.random.randint(len(self.filenames)))
|
||||||
|
filename = self.filenames[index]
|
||||||
|
example = load_preprocessed_example(filename)
|
||||||
|
example, _, _ = self.clipper(example)
|
||||||
|
return example
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_directory(cls, path: data.PathLike, clipper: ClipperProtocol):
|
||||||
|
filenames = list_preprocessed_files(path)
|
||||||
|
return cls(filenames, clipper=clipper)
|
||||||
|
|||||||
@ -14,7 +14,9 @@ from batdetect2.evaluate.match import (
|
|||||||
MatchConfig,
|
MatchConfig,
|
||||||
match_sound_events_and_raw_predictions,
|
match_sound_events_and_raw_predictions,
|
||||||
)
|
)
|
||||||
|
from batdetect2.models import Model
|
||||||
from batdetect2.plotting.evaluation import plot_example_gallery
|
from batdetect2.plotting.evaluation import plot_example_gallery
|
||||||
|
from batdetect2.postprocess import get_sound_event_predictions
|
||||||
from batdetect2.train.dataset import LabeledDataset
|
from batdetect2.train.dataset import LabeledDataset
|
||||||
from batdetect2.train.lightning import TrainingModule
|
from batdetect2.train.lightning import TrainingModule
|
||||||
from batdetect2.typing import (
|
from batdetect2.typing import (
|
||||||
@ -22,7 +24,6 @@ from batdetect2.typing import (
|
|||||||
MatchEvaluation,
|
MatchEvaluation,
|
||||||
MetricsProtocol,
|
MetricsProtocol,
|
||||||
ModelOutput,
|
ModelOutput,
|
||||||
PostprocessorProtocol,
|
|
||||||
TargetProtocol,
|
TargetProtocol,
|
||||||
TrainExample,
|
TrainExample,
|
||||||
)
|
)
|
||||||
@ -127,8 +128,7 @@ class ValidationMetrics(Callback):
|
|||||||
batch,
|
batch,
|
||||||
outputs,
|
outputs,
|
||||||
dataset=self.get_dataset(trainer),
|
dataset=self.get_dataset(trainer),
|
||||||
postprocessor=pl_module.model.postprocessor,
|
model=pl_module.model,
|
||||||
targets=pl_module.model.targets,
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -137,15 +137,14 @@ def _get_batch_clips_and_predictions(
|
|||||||
batch: TrainExample,
|
batch: TrainExample,
|
||||||
outputs: ModelOutput,
|
outputs: ModelOutput,
|
||||||
dataset: LabeledDataset,
|
dataset: LabeledDataset,
|
||||||
postprocessor: PostprocessorProtocol,
|
model: Model,
|
||||||
targets: TargetProtocol,
|
|
||||||
) -> List[Tuple[data.ClipAnnotation, List[BatDetect2Prediction]]]:
|
) -> List[Tuple[data.ClipAnnotation, List[BatDetect2Prediction]]]:
|
||||||
clip_annotations = [
|
clip_annotations = [
|
||||||
_get_subclip(
|
_get_subclip(
|
||||||
dataset.get_clip_annotation(example_id),
|
dataset.get_clip_annotation(example_id),
|
||||||
start_time=start_time.item(),
|
start_time=start_time.item(),
|
||||||
end_time=end_time.item(),
|
end_time=end_time.item(),
|
||||||
targets=targets,
|
targets=model.targets,
|
||||||
)
|
)
|
||||||
for example_id, start_time, end_time in zip(
|
for example_id, start_time, end_time in zip(
|
||||||
batch.idx,
|
batch.idx,
|
||||||
@ -156,9 +155,11 @@ def _get_batch_clips_and_predictions(
|
|||||||
|
|
||||||
clips = [clip_annotation.clip for clip_annotation in clip_annotations]
|
clips = [clip_annotation.clip for clip_annotation in clip_annotations]
|
||||||
|
|
||||||
raw_predictions = postprocessor.get_sound_event_predictions(
|
raw_predictions = get_sound_event_predictions(
|
||||||
outputs,
|
outputs,
|
||||||
clips,
|
clips,
|
||||||
|
targets=model.targets,
|
||||||
|
postprocessor=model.postprocessor
|
||||||
)
|
)
|
||||||
|
|
||||||
return [
|
return [
|
||||||
|
|||||||
@ -8,7 +8,7 @@ from batdetect2.configs import BaseConfig
|
|||||||
from batdetect2.typing import ClipperProtocol
|
from batdetect2.typing import ClipperProtocol
|
||||||
from batdetect2.typing.preprocess import PreprocessorProtocol
|
from batdetect2.typing.preprocess import PreprocessorProtocol
|
||||||
from batdetect2.typing.train import PreprocessedExample
|
from batdetect2.typing.train import PreprocessedExample
|
||||||
from batdetect2.utils.arrays import adjust_width
|
from batdetect2.utils.arrays import adjust_width, slice_tensor
|
||||||
|
|
||||||
DEFAULT_TRAIN_CLIP_DURATION = 0.512
|
DEFAULT_TRAIN_CLIP_DURATION = 0.512
|
||||||
DEFAULT_MAX_EMPTY_CLIP = 0.1
|
DEFAULT_MAX_EMPTY_CLIP = 0.1
|
||||||
@ -90,7 +90,12 @@ def select_subclip(
|
|||||||
audio_start = int(np.floor(start * input_samplerate))
|
audio_start = int(np.floor(start * input_samplerate))
|
||||||
|
|
||||||
audio = adjust_width(
|
audio = adjust_width(
|
||||||
example.audio[audio_start : audio_start + audio_width],
|
slice_tensor(
|
||||||
|
example.audio,
|
||||||
|
start=audio_start,
|
||||||
|
end=audio_start + audio_width,
|
||||||
|
dim=-1,
|
||||||
|
),
|
||||||
audio_width,
|
audio_width,
|
||||||
value=fill_value,
|
value=fill_value,
|
||||||
)
|
)
|
||||||
@ -100,19 +105,39 @@ def select_subclip(
|
|||||||
return PreprocessedExample(
|
return PreprocessedExample(
|
||||||
audio=audio,
|
audio=audio,
|
||||||
spectrogram=adjust_width(
|
spectrogram=adjust_width(
|
||||||
example.spectrogram[:, spec_start : spec_start + spec_width],
|
slice_tensor(
|
||||||
|
example.spectrogram,
|
||||||
|
start=spec_start,
|
||||||
|
end=spec_start + spec_width,
|
||||||
|
dim=-1,
|
||||||
|
),
|
||||||
spec_width,
|
spec_width,
|
||||||
),
|
),
|
||||||
class_heatmap=adjust_width(
|
class_heatmap=adjust_width(
|
||||||
example.class_heatmap[:, :, spec_start : spec_start + spec_width],
|
slice_tensor(
|
||||||
|
example.class_heatmap,
|
||||||
|
start=spec_start,
|
||||||
|
end=spec_start + spec_width,
|
||||||
|
dim=-1,
|
||||||
|
),
|
||||||
spec_width,
|
spec_width,
|
||||||
),
|
),
|
||||||
detection_heatmap=adjust_width(
|
detection_heatmap=adjust_width(
|
||||||
example.detection_heatmap[:, spec_start : spec_start + spec_width],
|
slice_tensor(
|
||||||
|
example.detection_heatmap,
|
||||||
|
start=spec_start,
|
||||||
|
end=spec_start + spec_width,
|
||||||
|
dim=-1,
|
||||||
|
),
|
||||||
spec_width,
|
spec_width,
|
||||||
),
|
),
|
||||||
size_heatmap=adjust_width(
|
size_heatmap=adjust_width(
|
||||||
example.size_heatmap[:, :, spec_start : spec_start + spec_width],
|
slice_tensor(
|
||||||
|
example.size_heatmap,
|
||||||
|
start=spec_start,
|
||||||
|
end=spec_start + spec_width,
|
||||||
|
dim=-1,
|
||||||
|
),
|
||||||
spec_width,
|
spec_width,
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|||||||
@ -44,8 +44,8 @@ class PLTrainerConfig(BaseConfig):
|
|||||||
|
|
||||||
|
|
||||||
class DataLoaderConfig(BaseConfig):
|
class DataLoaderConfig(BaseConfig):
|
||||||
batch_size: int
|
batch_size: int = 8
|
||||||
shuffle: bool
|
shuffle: bool = False
|
||||||
num_workers: int = 0
|
num_workers: int = 0
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -1,5 +1,4 @@
|
|||||||
from pathlib import Path
|
from typing import Optional, Sequence, Tuple
|
||||||
from typing import List, Optional, Sequence, Tuple
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
@ -7,6 +6,10 @@ from soundevent import data
|
|||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
|
|
||||||
from batdetect2.train.augmentations import Augmentation
|
from batdetect2.train.augmentations import Augmentation
|
||||||
|
from batdetect2.train.preprocess import (
|
||||||
|
list_preprocessed_files,
|
||||||
|
load_preprocessed_example,
|
||||||
|
)
|
||||||
from batdetect2.typing import ClipperProtocol, TrainExample
|
from batdetect2.typing import ClipperProtocol, TrainExample
|
||||||
from batdetect2.typing.train import PreprocessedExample
|
from batdetect2.typing.train import PreprocessedExample
|
||||||
|
|
||||||
@ -38,8 +41,8 @@ class LabeledDataset(Dataset):
|
|||||||
example = self.augmentation(example)
|
example = self.augmentation(example)
|
||||||
|
|
||||||
return TrainExample(
|
return TrainExample(
|
||||||
spec=example.spectrogram.unsqueeze(0),
|
spec=example.spectrogram,
|
||||||
detection_heatmap=example.detection_heatmap.unsqueeze(0),
|
detection_heatmap=example.detection_heatmap,
|
||||||
class_heatmap=example.class_heatmap,
|
class_heatmap=example.class_heatmap,
|
||||||
size_heatmap=example.size_heatmap,
|
size_heatmap=example.size_heatmap,
|
||||||
idx=torch.tensor(idx),
|
idx=torch.tensor(idx),
|
||||||
@ -73,37 +76,3 @@ class LabeledDataset(Dataset):
|
|||||||
def get_clip_annotation(self, idx) -> data.ClipAnnotation:
|
def get_clip_annotation(self, idx) -> data.ClipAnnotation:
|
||||||
item = np.load(self.filenames[idx], allow_pickle=True, mmap_mode="r+")
|
item = np.load(self.filenames[idx], allow_pickle=True, mmap_mode="r+")
|
||||||
return item["clip_annotation"].tolist()
|
return item["clip_annotation"].tolist()
|
||||||
|
|
||||||
|
|
||||||
def load_preprocessed_example(path: data.PathLike) -> PreprocessedExample:
|
|
||||||
item = np.load(path, mmap_mode="r+")
|
|
||||||
return PreprocessedExample(
|
|
||||||
audio=torch.tensor(item["audio"]),
|
|
||||||
spectrogram=torch.tensor(item["spectrogram"]),
|
|
||||||
size_heatmap=torch.tensor(item["size_heatmap"]),
|
|
||||||
detection_heatmap=torch.tensor(item["detection_heatmap"]),
|
|
||||||
class_heatmap=torch.tensor(item["class_heatmap"]),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def list_preprocessed_files(
|
|
||||||
directory: data.PathLike, extension: str = ".npz"
|
|
||||||
) -> List[Path]:
|
|
||||||
return list(Path(directory).glob(f"*{extension}"))
|
|
||||||
|
|
||||||
|
|
||||||
class RandomExampleSource:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
filenames: List[data.PathLike],
|
|
||||||
clipper: ClipperProtocol,
|
|
||||||
):
|
|
||||||
self.filenames = filenames
|
|
||||||
self.clipper = clipper
|
|
||||||
|
|
||||||
def __call__(self) -> PreprocessedExample:
|
|
||||||
index = int(np.random.randint(len(self.filenames)))
|
|
||||||
filename = self.filenames[index]
|
|
||||||
example = load_preprocessed_example(filename)
|
|
||||||
example, _, _ = self.clipper(example)
|
|
||||||
return example
|
|
||||||
|
|||||||
@ -41,7 +41,6 @@ from batdetect2.typing import (
|
|||||||
__all__ = [
|
__all__ = [
|
||||||
"LabelConfig",
|
"LabelConfig",
|
||||||
"build_clip_labeler",
|
"build_clip_labeler",
|
||||||
"generate_clip_label",
|
|
||||||
"generate_heatmaps",
|
"generate_heatmaps",
|
||||||
"load_label_config",
|
"load_label_config",
|
||||||
]
|
]
|
||||||
@ -99,21 +98,26 @@ def build_clip_labeler(
|
|||||||
lambda: config.to_yaml_string(),
|
lambda: config.to_yaml_string(),
|
||||||
)
|
)
|
||||||
return partial(
|
return partial(
|
||||||
generate_clip_label,
|
generate_heatmaps,
|
||||||
targets=targets,
|
targets=targets,
|
||||||
config=config,
|
|
||||||
min_freq=min_freq,
|
min_freq=min_freq,
|
||||||
max_freq=max_freq,
|
max_freq=max_freq,
|
||||||
|
target_sigma=config.sigma,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def generate_clip_label(
|
def map_to_pixels(x, size, min_val, max_val) -> int:
|
||||||
|
return int(np.interp(x, [min_val, max_val], [0, size]))
|
||||||
|
|
||||||
|
|
||||||
|
def generate_heatmaps(
|
||||||
clip_annotation: data.ClipAnnotation,
|
clip_annotation: data.ClipAnnotation,
|
||||||
spec: torch.Tensor,
|
spec: torch.Tensor,
|
||||||
targets: TargetProtocol,
|
targets: TargetProtocol,
|
||||||
config: LabelConfig,
|
|
||||||
min_freq: float,
|
min_freq: float,
|
||||||
max_freq: float,
|
max_freq: float,
|
||||||
|
target_sigma: float = 3.0,
|
||||||
|
dtype=torch.float32,
|
||||||
) -> Heatmaps:
|
) -> Heatmaps:
|
||||||
"""Generate training heatmaps for a single annotated clip.
|
"""Generate training heatmaps for a single annotated clip.
|
||||||
|
|
||||||
@ -150,57 +154,14 @@ def generate_clip_label(
|
|||||||
num=len(clip_annotation.sound_events),
|
num=len(clip_annotation.sound_events),
|
||||||
)
|
)
|
||||||
|
|
||||||
sound_events = []
|
height = spec.shape[-2]
|
||||||
|
width = spec.shape[-1]
|
||||||
for sound_event_annotation in clip_annotation.sound_events:
|
|
||||||
if not targets.filter(sound_event_annotation):
|
|
||||||
logger.debug(
|
|
||||||
"Sound event {sound_event} did not pass the filter. Tags: {tags}",
|
|
||||||
sound_event=sound_event_annotation,
|
|
||||||
tags=sound_event_annotation.tags,
|
|
||||||
)
|
|
||||||
continue
|
|
||||||
|
|
||||||
sound_events.append(targets.transform(sound_event_annotation))
|
|
||||||
|
|
||||||
return generate_heatmaps(
|
|
||||||
clip_annotation.model_copy(update=dict(sound_events=sound_events)),
|
|
||||||
spec=spec,
|
|
||||||
targets=targets,
|
|
||||||
target_sigma=config.sigma,
|
|
||||||
min_freq=min_freq,
|
|
||||||
max_freq=max_freq,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def map_to_pixels(x, size, min_val, max_val) -> int:
|
|
||||||
return int(np.interp(x, [min_val, max_val], [0, size]))
|
|
||||||
|
|
||||||
|
|
||||||
def generate_heatmaps(
|
|
||||||
clip_annotation: data.ClipAnnotation,
|
|
||||||
spec: torch.Tensor,
|
|
||||||
targets: TargetProtocol,
|
|
||||||
min_freq: float,
|
|
||||||
max_freq: float,
|
|
||||||
target_sigma: float = 3.0,
|
|
||||||
dtype=torch.float32,
|
|
||||||
) -> Heatmaps:
|
|
||||||
if not spec.ndim == 2:
|
|
||||||
raise ValueError(
|
|
||||||
"Expecting a 2-dimensional tensor of shape (H, W), "
|
|
||||||
"H is the height of the spectrogram "
|
|
||||||
"(frequency bins), and W is the width of the spectrogram "
|
|
||||||
f"(temporal bins). Instead got: {spec.shape}"
|
|
||||||
)
|
|
||||||
|
|
||||||
height, width = spec.shape
|
|
||||||
num_classes = len(targets.class_names)
|
num_classes = len(targets.class_names)
|
||||||
num_dims = len(targets.dimension_names)
|
num_dims = len(targets.dimension_names)
|
||||||
clip = clip_annotation.clip
|
clip = clip_annotation.clip
|
||||||
|
|
||||||
# Initialize heatmaps
|
# Initialize heatmaps
|
||||||
detection_heatmap = torch.zeros([height, width], dtype=dtype)
|
detection_heatmap = torch.zeros([1, height, width], dtype=dtype)
|
||||||
class_heatmap = torch.zeros([num_classes, height, width], dtype=dtype)
|
class_heatmap = torch.zeros([num_classes, height, width], dtype=dtype)
|
||||||
size_heatmap = torch.zeros([num_dims, height, width], dtype=dtype)
|
size_heatmap = torch.zeros([num_dims, height, width], dtype=dtype)
|
||||||
|
|
||||||
@ -214,6 +175,16 @@ def generate_heatmaps(
|
|||||||
times = times.to(spec.device)
|
times = times.to(spec.device)
|
||||||
|
|
||||||
for sound_event_annotation in clip_annotation.sound_events:
|
for sound_event_annotation in clip_annotation.sound_events:
|
||||||
|
if not targets.filter(sound_event_annotation):
|
||||||
|
logger.debug(
|
||||||
|
"Sound event {sound_event} did not pass the filter. Tags: {tags}",
|
||||||
|
sound_event=sound_event_annotation,
|
||||||
|
tags=sound_event_annotation.tags,
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
|
||||||
|
sound_event_annotation = targets.transform(sound_event_annotation)
|
||||||
|
|
||||||
geom = sound_event_annotation.sound_event.geometry
|
geom = sound_event_annotation.sound_event.geometry
|
||||||
if geom is None:
|
if geom is None:
|
||||||
logger.debug(
|
logger.debug(
|
||||||
@ -245,7 +216,10 @@ def generate_heatmaps(
|
|||||||
distance = (times - time_index) ** 2 + (freqs - freq_index) ** 2
|
distance = (times - time_index) ** 2 + (freqs - freq_index) ** 2
|
||||||
gaussian_blob = torch.exp(-distance / (2 * target_sigma**2))
|
gaussian_blob = torch.exp(-distance / (2 * target_sigma**2))
|
||||||
|
|
||||||
detection_heatmap = torch.maximum(detection_heatmap, gaussian_blob)
|
detection_heatmap[0] = torch.maximum(
|
||||||
|
detection_heatmap[0],
|
||||||
|
gaussian_blob,
|
||||||
|
)
|
||||||
size_heatmap[:, freq_index, time_index] = torch.tensor(size[:])
|
size_heatmap[:, freq_index, time_index] = torch.tensor(size[:])
|
||||||
|
|
||||||
# Get the class name of the sound event
|
# Get the class name of the sound event
|
||||||
|
|||||||
@ -34,7 +34,7 @@ class TrainingModule(L.LightningModule):
|
|||||||
return self.model(spec)
|
return self.model(spec)
|
||||||
|
|
||||||
def training_step(self, batch: TrainExample):
|
def training_step(self, batch: TrainExample):
|
||||||
outputs = self.model(batch.spec)
|
outputs = self.model.detector(batch.spec)
|
||||||
losses = self.loss(outputs, batch)
|
losses = self.loss(outputs, batch)
|
||||||
self.log("total_loss/train", losses.total, prog_bar=True, logger=True)
|
self.log("total_loss/train", losses.total, prog_bar=True, logger=True)
|
||||||
self.log("detection_loss/train", losses.total, logger=True)
|
self.log("detection_loss/train", losses.total, logger=True)
|
||||||
@ -47,7 +47,7 @@ class TrainingModule(L.LightningModule):
|
|||||||
batch: TrainExample,
|
batch: TrainExample,
|
||||||
batch_idx: int,
|
batch_idx: int,
|
||||||
) -> ModelOutput:
|
) -> ModelOutput:
|
||||||
outputs = self.model(batch.spec)
|
outputs = self.model.detector(batch.spec)
|
||||||
losses = self.loss(outputs, batch)
|
losses = self.loss(outputs, batch)
|
||||||
self.log("total_loss/val", losses.total, prog_bar=True, logger=True)
|
self.log("total_loss/val", losses.total, prog_bar=True, logger=True)
|
||||||
self.log("detection_loss/val", losses.total, logger=True)
|
self.log("detection_loss/val", losses.total, logger=True)
|
||||||
|
|||||||
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Callable, Optional, Sequence, TypedDict
|
from typing import Callable, List, Optional, Sequence, TypedDict
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
@ -28,6 +28,8 @@ __all__ = [
|
|||||||
"preprocess_dataset",
|
"preprocess_dataset",
|
||||||
"TrainPreprocessConfig",
|
"TrainPreprocessConfig",
|
||||||
"load_train_preprocessing_config",
|
"load_train_preprocessing_config",
|
||||||
|
"save_preprocessed_example",
|
||||||
|
"load_preprocessed_example",
|
||||||
]
|
]
|
||||||
|
|
||||||
FilenameFn = Callable[[data.ClipAnnotation], str]
|
FilenameFn = Callable[[data.ClipAnnotation], str]
|
||||||
@ -94,8 +96,10 @@ def generate_train_example(
|
|||||||
labeller: ClipLabeller,
|
labeller: ClipLabeller,
|
||||||
) -> PreprocessedExample:
|
) -> PreprocessedExample:
|
||||||
"""Generate a complete training example for one annotation."""
|
"""Generate a complete training example for one annotation."""
|
||||||
wave = torch.tensor(audio_loader.load_clip(clip_annotation.clip))
|
wave = torch.tensor(
|
||||||
spectrogram = preprocessor(wave)
|
audio_loader.load_clip(clip_annotation.clip)
|
||||||
|
).unsqueeze(0)
|
||||||
|
spectrogram = preprocessor(wave.unsqueeze(0)).squeeze(0)
|
||||||
heatmaps = labeller(clip_annotation, spectrogram)
|
heatmaps = labeller(clip_annotation, spectrogram)
|
||||||
return PreprocessedExample(
|
return PreprocessedExample(
|
||||||
audio=wave,
|
audio=wave,
|
||||||
@ -145,7 +149,7 @@ class PreprocessingDataset(torch.utils.data.Dataset):
|
|||||||
labeller=self.labeller,
|
labeller=self.labeller,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_example_to_file(example, clip_annotation, path)
|
save_preprocessed_example(example, clip_annotation, path)
|
||||||
|
|
||||||
return idx
|
return idx
|
||||||
|
|
||||||
@ -153,7 +157,7 @@ class PreprocessingDataset(torch.utils.data.Dataset):
|
|||||||
return len(self.clips)
|
return len(self.clips)
|
||||||
|
|
||||||
|
|
||||||
def save_example_to_file(
|
def save_preprocessed_example(
|
||||||
example: PreprocessedExample,
|
example: PreprocessedExample,
|
||||||
clip_annotation: data.ClipAnnotation,
|
clip_annotation: data.ClipAnnotation,
|
||||||
path: data.PathLike,
|
path: data.PathLike,
|
||||||
@ -169,6 +173,23 @@ def save_example_to_file(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def load_preprocessed_example(path: data.PathLike) -> PreprocessedExample:
|
||||||
|
item = np.load(path, mmap_mode="r+")
|
||||||
|
return PreprocessedExample(
|
||||||
|
audio=torch.tensor(item["audio"]),
|
||||||
|
spectrogram=torch.tensor(item["spectrogram"]),
|
||||||
|
size_heatmap=torch.tensor(item["size_heatmap"]),
|
||||||
|
detection_heatmap=torch.tensor(item["detection_heatmap"]),
|
||||||
|
class_heatmap=torch.tensor(item["class_heatmap"]),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def list_preprocessed_files(
|
||||||
|
directory: data.PathLike, extension: str = ".npz"
|
||||||
|
) -> List[Path]:
|
||||||
|
return list(Path(directory).glob(f"*{extension}"))
|
||||||
|
|
||||||
|
|
||||||
def _get_filename(clip_annotation: data.ClipAnnotation) -> str:
|
def _get_filename(clip_annotation: data.ClipAnnotation) -> str:
|
||||||
"""Generate a default output filename based on the annotation UUID."""
|
"""Generate a default output filename based on the annotation UUID."""
|
||||||
return f"{clip_annotation.uuid}"
|
return f"{clip_annotation.uuid}"
|
||||||
|
|||||||
@ -15,13 +15,15 @@ from batdetect2.evaluate.metrics import (
|
|||||||
DetectionAveragePrecision,
|
DetectionAveragePrecision,
|
||||||
)
|
)
|
||||||
from batdetect2.models import build_model
|
from batdetect2.models import build_model
|
||||||
from batdetect2.train.augmentations import build_augmentations
|
from batdetect2.train.augmentations import (
|
||||||
|
RandomExampleSource,
|
||||||
|
build_augmentations,
|
||||||
|
)
|
||||||
from batdetect2.train.callbacks import ValidationMetrics
|
from batdetect2.train.callbacks import ValidationMetrics
|
||||||
from batdetect2.train.clips import build_clipper
|
from batdetect2.train.clips import build_clipper
|
||||||
from batdetect2.train.config import FullTrainingConfig, TrainingConfig
|
from batdetect2.train.config import FullTrainingConfig, TrainingConfig
|
||||||
from batdetect2.train.dataset import (
|
from batdetect2.train.dataset import (
|
||||||
LabeledDataset,
|
LabeledDataset,
|
||||||
RandomExampleSource,
|
|
||||||
)
|
)
|
||||||
from batdetect2.train.lightning import TrainingModule
|
from batdetect2.train.lightning import TrainingModule
|
||||||
from batdetect2.train.logging import build_logger
|
from batdetect2.train.logging import build_logger
|
||||||
|
|||||||
@ -95,69 +95,10 @@ class BatDetect2Prediction:
|
|||||||
class PostprocessorProtocol(Protocol):
|
class PostprocessorProtocol(Protocol):
|
||||||
"""Protocol defining the interface for the full postprocessing pipeline."""
|
"""Protocol defining the interface for the full postprocessing pipeline."""
|
||||||
|
|
||||||
|
def __call__(self, output: ModelOutput) -> List[Detections]: ...
|
||||||
|
|
||||||
def get_detections(
|
def get_detections(
|
||||||
self,
|
self,
|
||||||
output: ModelOutput,
|
output: ModelOutput,
|
||||||
clips: Optional[List[data.Clip]] = None,
|
clips: Optional[List[data.Clip]] = None,
|
||||||
) -> List[Detections]: ...
|
) -> List[Detections]: ...
|
||||||
|
|
||||||
def get_raw_predictions(
|
|
||||||
self,
|
|
||||||
output: ModelOutput,
|
|
||||||
clips: List[data.Clip],
|
|
||||||
) -> List[List[RawPrediction]]:
|
|
||||||
"""Extract intermediate RawPrediction objects for a batch.
|
|
||||||
|
|
||||||
Processes the raw model output for a batch through remapping, NMS,
|
|
||||||
detection, data extraction, and geometry recovery to produce a list of
|
|
||||||
`RawPrediction` objects for each corresponding input clip. This provides
|
|
||||||
a simplified, intermediate representation before final tag decoding.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
output : ModelOutput
|
|
||||||
The raw output from the neural network model for a batch.
|
|
||||||
clips : List[data.Clip]
|
|
||||||
A list of `soundevent.data.Clip` objects corresponding to the batch
|
|
||||||
items, providing context. Must match the batch size of `output`.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
List[List[RawPrediction]]
|
|
||||||
A list of lists (one inner list per input clip, in order). Each
|
|
||||||
inner list contains the `RawPrediction` objects extracted for the
|
|
||||||
corresponding input clip.
|
|
||||||
"""
|
|
||||||
...
|
|
||||||
|
|
||||||
def get_sound_event_predictions(
|
|
||||||
self, output: ModelOutput, clips: List[data.Clip]
|
|
||||||
) -> List[List[BatDetect2Prediction]]: ...
|
|
||||||
|
|
||||||
def get_predictions(
|
|
||||||
self,
|
|
||||||
output: ModelOutput,
|
|
||||||
clips: List[data.Clip],
|
|
||||||
) -> List[data.ClipPrediction]:
|
|
||||||
"""Perform the full postprocessing pipeline for a batch.
|
|
||||||
|
|
||||||
Takes raw model output for a batch and corresponding clips, applies the
|
|
||||||
entire postprocessing chain, and returns the final, interpretable
|
|
||||||
predictions as a list of `soundevent.data.ClipPrediction` objects.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
output : ModelOutput
|
|
||||||
The raw output from the neural network model for a batch.
|
|
||||||
clips : List[data.Clip]
|
|
||||||
A list of `soundevent.data.Clip` objects corresponding to the batch
|
|
||||||
items, providing context. Must match the batch size of `output`.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
List[data.ClipPrediction]
|
|
||||||
A list containing one `ClipPrediction` object for each input clip
|
|
||||||
(in the same order), populated with `SoundEventPrediction` objects
|
|
||||||
representing the final detections with decoded tags and geometry.
|
|
||||||
"""
|
|
||||||
...
|
|
||||||
|
|||||||
@ -12,8 +12,8 @@ that components responsible for these tasks can be interacted with consistently
|
|||||||
throughout BatDetect2.
|
throughout BatDetect2.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from collections.abc import Callable
|
from collections.abc import Callable, Iterable
|
||||||
from typing import List, Optional, Protocol
|
from typing import List, Optional, Protocol, Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from soundevent import data
|
from soundevent import data
|
||||||
|
|||||||
@ -1,3 +1,5 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import xarray as xr
|
import xarray as xr
|
||||||
@ -80,3 +82,14 @@ def adjust_width(
|
|||||||
for index in range(dims)
|
for index in range(dims)
|
||||||
]
|
]
|
||||||
return tensor[tuple(slices)]
|
return tensor[tuple(slices)]
|
||||||
|
|
||||||
|
|
||||||
|
def slice_tensor(
|
||||||
|
tensor: torch.Tensor,
|
||||||
|
start: Optional[int] = None,
|
||||||
|
end: Optional[int] = None,
|
||||||
|
dim: int = -1,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
slices = [slice(None)] * tensor.ndim
|
||||||
|
slices[dim] = slice(start, end)
|
||||||
|
return tensor[tuple(slices)]
|
||||||
|
|||||||
@ -38,7 +38,6 @@ def build_from_config(
|
|||||||
max_freq=preprocessor.max_freq,
|
max_freq=preprocessor.max_freq,
|
||||||
)
|
)
|
||||||
postprocessor = build_postprocessor(
|
postprocessor = build_postprocessor(
|
||||||
targets,
|
|
||||||
preprocessor=preprocessor,
|
preprocessor=preprocessor,
|
||||||
config=postprocessing_config,
|
config=postprocessing_config,
|
||||||
)
|
)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user