Merge pull request #37 from macaodha/fix/GH-30-torch-deprecation-warning-weights-only

fix: Address PyTorch Model Loading Deprecation Warning (GH-30)
This commit is contained in:
Santiago Martinez Balvanera 2024-11-11 12:02:26 +00:00 committed by GitHub
commit 4627ddd739
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 109 additions and 5 deletions

View File

@ -85,6 +85,7 @@ def load_model(
model_path: str = DEFAULT_MODEL_PATH,
load_weights: bool = True,
device: Optional[torch.device] = None,
weights_only: bool = True,
) -> Tuple[DetectionModel, ModelParameters]:
"""Load model from file.
@ -105,7 +106,11 @@ def load_model(
if not os.path.isfile(model_path):
raise FileNotFoundError("Model file not found.")
net_params = torch.load(model_path, map_location=device)
net_params = torch.load(
model_path,
map_location=device,
weights_only=weights_only,
)
params = net_params["params"]

View File

@ -1,8 +1,31 @@
from pathlib import Path
from typing import List
import pytest
@pytest.fixture
def example_data_dir() -> Path:
pkg_dir = Path(__file__).parent.parent
example_data_dir = pkg_dir / "example_data"
assert example_data_dir.exists()
return example_data_dir
@pytest.fixture
def example_audio_dir(example_data_dir: Path) -> Path:
example_audio_dir = example_data_dir / "audio"
assert example_audio_dir.exists()
return example_audio_dir
@pytest.fixture
def example_audio_files(example_audio_dir: Path) -> List[Path]:
audio_files = list(example_audio_dir.glob("*.[wW][aA][vV]"))
assert len(audio_files) == 3
return audio_files
@pytest.fixture
def data_dir() -> Path:
dir = Path(__file__).parent / "data"

View File

@ -1,14 +1,13 @@
"""Test bat detect module API."""
from pathlib import Path
import os
from glob import glob
from pathlib import Path
import numpy as np
import soundfile as sf
import torch
from torch import nn
import soundfile as sf
from batdetect2 import api
@ -267,7 +266,6 @@ def test_process_file_with_spec_slices():
assert len(results["spec_slices"]) == len(detections)
def test_process_file_with_empty_predictions_does_not_fail(
tmp_path: Path,
):

78
tests/test_model.py Normal file
View File

@ -0,0 +1,78 @@
"""Test suite for model functions."""
import warnings
from pathlib import Path
from typing import List
import numpy as np
from hypothesis import given, settings
from hypothesis import strategies as st
from batdetect2 import api
from batdetect2.detector import parameters
def test_can_import_model_without_warnings():
with warnings.catch_warnings():
warnings.simplefilter("error")
api.load_model()
@settings(deadline=None, max_examples=5)
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_can_import_model_without_pickle(duration: float):
# NOTE: remove this test once no other issues are found This is a temporary
# test to check that change in model loading did not impact model behaviour
# in any way.
samplerate = parameters.TARGET_SAMPLERATE_HZ
audio = np.random.rand(int(duration * samplerate))
model_without_pickle, model_params_without_pickle = api.load_model(
weights_only=True
)
model_with_pickle, model_params_with_pickle = api.load_model(
weights_only=False
)
assert model_params_without_pickle == model_params_with_pickle
predictions_without_pickle, _, _ = api.process_audio(
audio,
model=model_without_pickle,
)
predictions_with_pickle, _, _ = api.process_audio(
audio,
model=model_with_pickle,
)
assert predictions_without_pickle == predictions_with_pickle
def test_can_import_model_without_pickle_on_test_data(
example_audio_files: List[Path],
):
# NOTE: remove this test once no other issues are found This is a temporary
# test to check that change in model loading did not impact model behaviour
# in any way.
model_without_pickle, model_params_without_pickle = api.load_model(
weights_only=True
)
model_with_pickle, model_params_with_pickle = api.load_model(
weights_only=False
)
assert model_params_without_pickle == model_params_with_pickle
for audio_file in example_audio_files:
audio = api.load_audio(str(audio_file))
predictions_without_pickle, _, _ = api.process_audio(
audio,
model=model_without_pickle,
)
predictions_with_pickle, _, _ = api.process_audio(
audio,
model=model_with_pickle,
)
assert predictions_without_pickle == predictions_with_pickle