mirror of
https://github.com/macaodha/batdetect2.git
synced 2026-01-09 16:59:33 +01:00
Use pascal voc map computation by default
This commit is contained in:
parent
704b28292b
commit
60e922d565
@ -1,4 +1,14 @@
|
||||
from typing import Annotated, Dict, List, Literal, Optional, Sequence, Union
|
||||
from collections.abc import Callable, Mapping
|
||||
from typing import (
|
||||
Annotated,
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Sequence,
|
||||
Union,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
from pydantic import Field
|
||||
@ -16,11 +26,61 @@ __all__ = ["DetectionAP", "ClassificationAP"]
|
||||
metrics_registry: Registry[MetricsProtocol, [List[str]]] = Registry("metric")
|
||||
|
||||
|
||||
AveragePrecisionImplementation = Literal["sklearn", "pascal_voc"]
|
||||
|
||||
|
||||
class DetectionAPConfig(BaseConfig):
|
||||
name: Literal["detection_ap"] = "detection_ap"
|
||||
implementation: AveragePrecisionImplementation = "pascal_voc"
|
||||
|
||||
|
||||
def pascal_voc_average_precision(y_true, y_score) -> float:
|
||||
y_true = np.array(y_true)
|
||||
y_score = np.array(y_score)
|
||||
|
||||
sort_ind = np.argsort(y_score)[::-1]
|
||||
y_true_sorted = y_true[sort_ind]
|
||||
|
||||
num_positives = y_true.sum()
|
||||
false_pos_c = np.cumsum(1 - y_true_sorted)
|
||||
true_pos_c = np.cumsum(y_true_sorted)
|
||||
|
||||
recall = true_pos_c / num_positives
|
||||
precision = true_pos_c / np.maximum(
|
||||
true_pos_c + false_pos_c,
|
||||
np.finfo(np.float64).eps,
|
||||
)
|
||||
|
||||
precision[np.isnan(precision)] = 0
|
||||
recall[np.isnan(recall)] = 0
|
||||
|
||||
# pascal 12 way
|
||||
mprec = np.hstack((0, precision, 0))
|
||||
mrec = np.hstack((0, recall, 1))
|
||||
for ii in range(mprec.shape[0] - 2, -1, -1):
|
||||
mprec[ii] = np.maximum(mprec[ii], mprec[ii + 1])
|
||||
inds = np.where(np.not_equal(mrec[1:], mrec[:-1]))[0] + 1
|
||||
ave_prec = ((mrec[inds] - mrec[inds - 1]) * mprec[inds]).sum()
|
||||
|
||||
return ave_prec
|
||||
|
||||
|
||||
_ap_impl_mapping: Mapping[
|
||||
AveragePrecisionImplementation, Callable[[Any, Any], float]
|
||||
] = {
|
||||
"sklearn": metrics.average_precision_score,
|
||||
"pascal_voc": pascal_voc_average_precision,
|
||||
}
|
||||
|
||||
|
||||
class DetectionAP(MetricsProtocol):
|
||||
def __init__(
|
||||
self,
|
||||
implementation: AveragePrecisionImplementation = "pascal_voc",
|
||||
):
|
||||
self.implementation = implementation
|
||||
self.metric = _ap_impl_mapping[self.implementation]
|
||||
|
||||
def __call__(
|
||||
self, clip_evaluations: Sequence[ClipEvaluation]
|
||||
) -> Dict[str, float]:
|
||||
@ -31,12 +91,12 @@ class DetectionAP(MetricsProtocol):
|
||||
for match in clip_eval.matches
|
||||
]
|
||||
)
|
||||
score = float(metrics.average_precision_score(y_true, y_score))
|
||||
score = float(self.metric(y_true, y_score))
|
||||
return {"detection_AP": score}
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: DetectionAPConfig, class_names: List[str]):
|
||||
return cls()
|
||||
return cls(implementation=config.implementation)
|
||||
|
||||
|
||||
metrics_registry.register(DetectionAPConfig, DetectionAP)
|
||||
@ -52,9 +112,12 @@ class ClassificationAP(MetricsProtocol):
|
||||
def __init__(
|
||||
self,
|
||||
class_names: List[str],
|
||||
implementation: AveragePrecisionImplementation = "pascal_voc",
|
||||
include: Optional[List[str]] = None,
|
||||
exclude: Optional[List[str]] = None,
|
||||
):
|
||||
self.implementation = implementation
|
||||
self.metric = _ap_impl_mapping[self.implementation]
|
||||
self.class_names = class_names
|
||||
|
||||
self.selected = class_names
|
||||
@ -107,10 +170,7 @@ class ClassificationAP(MetricsProtocol):
|
||||
for class_index, class_name in enumerate(self.class_names):
|
||||
y_true_class = y_true[:, class_index]
|
||||
y_pred_class = y_pred[:, class_index]
|
||||
class_ap = metrics.average_precision_score(
|
||||
y_true_class,
|
||||
y_pred_class,
|
||||
)
|
||||
class_ap = self.metric(y_true_class, y_pred_class)
|
||||
class_scores[class_name] = float(class_ap)
|
||||
|
||||
mean_ap = np.mean(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user