Use pascal voc map computation by default

This commit is contained in:
mbsantiago 2025-09-16 10:56:37 +01:00
parent 704b28292b
commit 60e922d565

View File

@ -1,4 +1,14 @@
from typing import Annotated, Dict, List, Literal, Optional, Sequence, Union
from collections.abc import Callable, Mapping
from typing import (
Annotated,
Any,
Dict,
List,
Literal,
Optional,
Sequence,
Union,
)
import numpy as np
from pydantic import Field
@ -16,11 +26,61 @@ __all__ = ["DetectionAP", "ClassificationAP"]
metrics_registry: Registry[MetricsProtocol, [List[str]]] = Registry("metric")
AveragePrecisionImplementation = Literal["sklearn", "pascal_voc"]
class DetectionAPConfig(BaseConfig):
name: Literal["detection_ap"] = "detection_ap"
implementation: AveragePrecisionImplementation = "pascal_voc"
def pascal_voc_average_precision(y_true, y_score) -> float:
y_true = np.array(y_true)
y_score = np.array(y_score)
sort_ind = np.argsort(y_score)[::-1]
y_true_sorted = y_true[sort_ind]
num_positives = y_true.sum()
false_pos_c = np.cumsum(1 - y_true_sorted)
true_pos_c = np.cumsum(y_true_sorted)
recall = true_pos_c / num_positives
precision = true_pos_c / np.maximum(
true_pos_c + false_pos_c,
np.finfo(np.float64).eps,
)
precision[np.isnan(precision)] = 0
recall[np.isnan(recall)] = 0
# pascal 12 way
mprec = np.hstack((0, precision, 0))
mrec = np.hstack((0, recall, 1))
for ii in range(mprec.shape[0] - 2, -1, -1):
mprec[ii] = np.maximum(mprec[ii], mprec[ii + 1])
inds = np.where(np.not_equal(mrec[1:], mrec[:-1]))[0] + 1
ave_prec = ((mrec[inds] - mrec[inds - 1]) * mprec[inds]).sum()
return ave_prec
_ap_impl_mapping: Mapping[
AveragePrecisionImplementation, Callable[[Any, Any], float]
] = {
"sklearn": metrics.average_precision_score,
"pascal_voc": pascal_voc_average_precision,
}
class DetectionAP(MetricsProtocol):
def __init__(
self,
implementation: AveragePrecisionImplementation = "pascal_voc",
):
self.implementation = implementation
self.metric = _ap_impl_mapping[self.implementation]
def __call__(
self, clip_evaluations: Sequence[ClipEvaluation]
) -> Dict[str, float]:
@ -31,12 +91,12 @@ class DetectionAP(MetricsProtocol):
for match in clip_eval.matches
]
)
score = float(metrics.average_precision_score(y_true, y_score))
score = float(self.metric(y_true, y_score))
return {"detection_AP": score}
@classmethod
def from_config(cls, config: DetectionAPConfig, class_names: List[str]):
return cls()
return cls(implementation=config.implementation)
metrics_registry.register(DetectionAPConfig, DetectionAP)
@ -52,9 +112,12 @@ class ClassificationAP(MetricsProtocol):
def __init__(
self,
class_names: List[str],
implementation: AveragePrecisionImplementation = "pascal_voc",
include: Optional[List[str]] = None,
exclude: Optional[List[str]] = None,
):
self.implementation = implementation
self.metric = _ap_impl_mapping[self.implementation]
self.class_names = class_names
self.selected = class_names
@ -107,10 +170,7 @@ class ClassificationAP(MetricsProtocol):
for class_index, class_name in enumerate(self.class_names):
y_true_class = y_true[:, class_index]
y_pred_class = y_pred[:, class_index]
class_ap = metrics.average_precision_score(
y_true_class,
y_pred_class,
)
class_ap = self.metric(y_true_class, y_pred_class)
class_scores[class_name] = float(class_ap)
mean_ap = np.mean(