mirror of
https://github.com/macaodha/batdetect2.git
synced 2026-01-10 17:19:34 +01:00
Add detection_class_name to targets protocol
This commit is contained in:
parent
41b18c3f0a
commit
615c811bb4
@ -301,7 +301,8 @@ def load_batdetect2_merged_annotated_dataset(
|
||||
for ann in content:
|
||||
try:
|
||||
ann = FileAnnotation.model_validate(ann)
|
||||
except ValueError:
|
||||
except ValueError as err:
|
||||
logger.warning(f"Invalid annotation file: {err}")
|
||||
continue
|
||||
|
||||
if (
|
||||
@ -309,14 +310,17 @@ def load_batdetect2_merged_annotated_dataset(
|
||||
and dataset.filter.only_annotated
|
||||
and not ann.annotated
|
||||
):
|
||||
logger.debug(f"Skipping incomplete annotation {ann.id}")
|
||||
continue
|
||||
|
||||
if dataset.filter and dataset.filter.exclude_issues and ann.issues:
|
||||
logger.debug(f"Skipping annotation with issues {ann.id}")
|
||||
continue
|
||||
|
||||
try:
|
||||
clip = file_annotation_to_clip(ann, audio_dir=audio_dir)
|
||||
except FileNotFoundError:
|
||||
except FileNotFoundError as err:
|
||||
logger.warning(f"Error loading annotations: {err}")
|
||||
continue
|
||||
|
||||
annotations.append(file_annotation_to_clip_annotation(ann, clip))
|
||||
|
||||
@ -100,8 +100,11 @@ def extract_sound_events_df(
|
||||
|
||||
class_name = targets.encode_class(sound_event)
|
||||
|
||||
if class_name is None and exclude_generic:
|
||||
if class_name is None:
|
||||
if exclude_generic:
|
||||
continue
|
||||
else:
|
||||
class_name = targets.detection_class_name
|
||||
|
||||
start_time, low_freq, end_time, high_freq = compute_bounds(
|
||||
sound_event.sound_event.geometry
|
||||
@ -153,7 +156,7 @@ def compute_class_summary(
|
||||
sound_events = extract_sound_events_df(
|
||||
dataset,
|
||||
targets,
|
||||
exclude_generic=True,
|
||||
exclude_generic=False,
|
||||
exclude_non_target=True,
|
||||
)
|
||||
recordings = extract_recordings_df(dataset)
|
||||
|
||||
@ -103,7 +103,7 @@ def convert_raw_prediction_to_sound_event_prediction(
|
||||
tags = [
|
||||
*get_generic_tags(
|
||||
raw_prediction.detection_score,
|
||||
generic_class_tags=targets.generic_class_tags,
|
||||
generic_class_tags=targets.detection_class_tags,
|
||||
),
|
||||
*get_class_tags(
|
||||
raw_prediction.class_scores,
|
||||
|
||||
@ -140,16 +140,18 @@ class Targets(TargetProtocol):
|
||||
"""
|
||||
|
||||
class_names: List[str]
|
||||
generic_class_tags: List[data.Tag]
|
||||
detection_class_tags: List[data.Tag]
|
||||
dimension_names: List[str]
|
||||
detection_class_name: str
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
detection_class_name: str,
|
||||
encode_fn: SoundEventEncoder,
|
||||
decode_fn: SoundEventDecoder,
|
||||
roi_mapper: ROITargetMapper,
|
||||
class_names: list[str],
|
||||
generic_class_tags: List[data.Tag],
|
||||
detection_class_tags: List[data.Tag],
|
||||
filter_fn: Optional[SoundEventCondition] = None,
|
||||
roi_mapper_overrides: Optional[dict[str, ROITargetMapper]] = None,
|
||||
):
|
||||
@ -175,8 +177,9 @@ class Targets(TargetProtocol):
|
||||
transform_fn : SoundEventTransformation, optional
|
||||
Configured function to transform annotation tags. Defaults to None.
|
||||
"""
|
||||
self.detection_class_name = detection_class_name
|
||||
self.class_names = class_names
|
||||
self.generic_class_tags = generic_class_tags
|
||||
self.detection_class_tags = detection_class_tags
|
||||
self.dimension_names = roi_mapper.dimension_names
|
||||
|
||||
self._roi_mapper = roi_mapper
|
||||
@ -381,7 +384,8 @@ def build_targets(config: Optional[TargetConfig] = None) -> Targets:
|
||||
decode_fn=decode_fn,
|
||||
class_names=class_names,
|
||||
roi_mapper=roi_mapper,
|
||||
generic_class_tags=generic_class_tags,
|
||||
detection_class_name=config.detection_target.name,
|
||||
detection_class_tags=generic_class_tags,
|
||||
roi_mapper_overrides=roi_overrides,
|
||||
)
|
||||
|
||||
|
||||
@ -158,25 +158,13 @@ def build_trainer_callbacks(
|
||||
if run_name is not None:
|
||||
checkpoint_dir = checkpoint_dir / run_name
|
||||
|
||||
filename = "best-{epoch:02d}-{val_loss:.0f}"
|
||||
|
||||
if run_name is not None:
|
||||
filename = f"run_{run_name}_{filename}"
|
||||
|
||||
if experiment_name is not None:
|
||||
filename = f"experiment_{experiment_name}_{filename}"
|
||||
|
||||
model_checkpoint = ModelCheckpoint(
|
||||
return [
|
||||
ModelCheckpoint(
|
||||
dirpath=str(checkpoint_dir),
|
||||
save_top_k=1,
|
||||
filename=filename,
|
||||
filename="best-{epoch:02d}-{val_loss:.0f}",
|
||||
monitor="total_loss/val",
|
||||
)
|
||||
|
||||
model_checkpoint.CHECKPOINT_EQUALS_CHAR = "_" # type: ignore
|
||||
|
||||
return [
|
||||
model_checkpoint,
|
||||
),
|
||||
ValidationMetrics(
|
||||
metrics=[
|
||||
DetectionAveragePrecision(),
|
||||
@ -226,7 +214,8 @@ def build_trainer(
|
||||
config=conf.evaluation,
|
||||
preprocessor=build_preprocessor(conf.preprocess),
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
experiment_name=train_logger.name,
|
||||
experiment_name=experiment_name,
|
||||
run_name=run_name,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@ -94,8 +94,10 @@ class TargetProtocol(Protocol):
|
||||
class_names: List[str]
|
||||
"""Ordered list of unique names for the specific target classes."""
|
||||
|
||||
generic_class_tags: List[data.Tag]
|
||||
"""List of tags representing the generic (unclassified) category."""
|
||||
detection_class_tags: List[data.Tag]
|
||||
"""List of tags representing the detection category (unclassified)."""
|
||||
|
||||
detection_class_name: str
|
||||
|
||||
dimension_names: List[str]
|
||||
"""Names of the size dimensions (e.g., ['width', 'height'])."""
|
||||
|
||||
Loading…
Reference in New Issue
Block a user