mirror of
https://github.com/macaodha/batdetect2.git
synced 2026-01-10 17:19:34 +01:00
Add GreedyAffinityMatching as an alternative to optimal affinity matching
This commit is contained in:
parent
6039b2c3eb
commit
69921f258a
@ -3,14 +3,15 @@ from typing import Annotated, List, Literal, Optional, Sequence, Tuple, Union
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pydantic import Field
|
from pydantic import Field
|
||||||
|
from scipy.optimize import linear_sum_assignment
|
||||||
from soundevent import data
|
from soundevent import data
|
||||||
from soundevent.evaluation import compute_affinity
|
from soundevent.evaluation import compute_affinity
|
||||||
from soundevent.evaluation import match_geometries as optimal_match
|
from soundevent.geometry import buffer_geometry, compute_bounds, scale_geometry
|
||||||
from soundevent.geometry import compute_bounds
|
|
||||||
|
|
||||||
from batdetect2.core import BaseConfig, Registry
|
from batdetect2.core import BaseConfig, Registry
|
||||||
from batdetect2.evaluate.affinity import (
|
from batdetect2.evaluate.affinity import (
|
||||||
AffinityConfig,
|
AffinityConfig,
|
||||||
|
BBoxIOUConfig,
|
||||||
GeometricIOUConfig,
|
GeometricIOUConfig,
|
||||||
build_affinity_function,
|
build_affinity_function,
|
||||||
)
|
)
|
||||||
@ -357,23 +358,32 @@ def greedy_match(
|
|||||||
yield None, gt_idx, 0
|
yield None, gt_idx, 0
|
||||||
|
|
||||||
|
|
||||||
class OptimalMatchConfig(BaseConfig):
|
class GreedyAffinityMatchConfig(BaseConfig):
|
||||||
name: Literal["optimal_match"] = "optimal_match"
|
name: Literal["greedy_affinity_match"] = "greedy_affinity_match"
|
||||||
|
affinity_function: AffinityConfig = Field(default_factory=BBoxIOUConfig)
|
||||||
affinity_threshold: float = 0.5
|
affinity_threshold: float = 0.5
|
||||||
time_buffer: float = 0.005
|
time_buffer: float = 0
|
||||||
frequency_buffer: float = 1_000
|
frequency_buffer: float = 0
|
||||||
|
time_scale: float = 1.0
|
||||||
|
frequency_scale: float = 1.0
|
||||||
|
|
||||||
|
|
||||||
class OptimalMatcher(MatcherProtocol):
|
class GreedyAffinityMatcher(MatcherProtocol):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
affinity_threshold: float,
|
affinity_threshold: float,
|
||||||
time_buffer: float,
|
affinity_function: AffinityFunction,
|
||||||
frequency_buffer: float,
|
time_buffer: float = 0,
|
||||||
|
frequency_buffer: float = 0,
|
||||||
|
time_scale: float = 1.0,
|
||||||
|
frequency_scale: float = 1.0,
|
||||||
):
|
):
|
||||||
self.affinity_threshold = affinity_threshold
|
self.affinity_threshold = affinity_threshold
|
||||||
|
self.affinity_function = affinity_function
|
||||||
self.time_buffer = time_buffer
|
self.time_buffer = time_buffer
|
||||||
self.frequency_buffer = frequency_buffer
|
self.frequency_buffer = frequency_buffer
|
||||||
|
self.time_scale = time_scale
|
||||||
|
self.frequency_scale = frequency_scale
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self,
|
self,
|
||||||
@ -381,21 +391,125 @@ class OptimalMatcher(MatcherProtocol):
|
|||||||
predictions: Sequence[data.Geometry],
|
predictions: Sequence[data.Geometry],
|
||||||
scores: Sequence[float],
|
scores: Sequence[float],
|
||||||
):
|
):
|
||||||
return optimal_match(
|
if self.time_buffer != 0 or self.frequency_buffer != 0:
|
||||||
source=predictions,
|
ground_truth = [
|
||||||
target=ground_truth,
|
buffer_geometry(
|
||||||
|
geometry,
|
||||||
time_buffer=self.time_buffer,
|
time_buffer=self.time_buffer,
|
||||||
freq_buffer=self.frequency_buffer,
|
freq_buffer=self.frequency_buffer,
|
||||||
|
)
|
||||||
|
for geometry in ground_truth
|
||||||
|
]
|
||||||
|
|
||||||
|
predictions = [
|
||||||
|
buffer_geometry(
|
||||||
|
geometry,
|
||||||
|
time_buffer=self.time_buffer,
|
||||||
|
freq_buffer=self.frequency_buffer,
|
||||||
|
)
|
||||||
|
for geometry in predictions
|
||||||
|
]
|
||||||
|
|
||||||
|
affinity_matrix = compute_affinity_matrix(
|
||||||
|
ground_truth,
|
||||||
|
predictions,
|
||||||
|
self.affinity_function,
|
||||||
|
time_scale=self.time_scale,
|
||||||
|
frequency_scale=self.frequency_scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
return select_greedy_matches(
|
||||||
|
affinity_matrix,
|
||||||
|
affinity_threshold=self.affinity_threshold,
|
||||||
|
)
|
||||||
|
|
||||||
|
@matching_strategies.register(GreedyAffinityMatchConfig)
|
||||||
|
@staticmethod
|
||||||
|
def from_config(config: GreedyAffinityMatchConfig):
|
||||||
|
affinity_function = build_affinity_function(config.affinity_function)
|
||||||
|
return GreedyAffinityMatcher(
|
||||||
|
affinity_threshold=config.affinity_threshold,
|
||||||
|
affinity_function=affinity_function,
|
||||||
|
time_scale=config.time_scale,
|
||||||
|
frequency_scale=config.frequency_scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class OptimalMatchConfig(BaseConfig):
|
||||||
|
name: Literal["optimal_affinity_match"] = "optimal_affinity_match"
|
||||||
|
affinity_function: AffinityConfig = Field(default_factory=BBoxIOUConfig)
|
||||||
|
affinity_threshold: float = 0.5
|
||||||
|
time_buffer: float = 0
|
||||||
|
frequency_buffer: float = 0
|
||||||
|
time_scale: float = 1.0
|
||||||
|
frequency_scale: float = 1.0
|
||||||
|
|
||||||
|
|
||||||
|
class OptimalMatcher(MatcherProtocol):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
affinity_threshold: float,
|
||||||
|
affinity_function: AffinityFunction,
|
||||||
|
time_buffer: float = 0,
|
||||||
|
frequency_buffer: float = 0,
|
||||||
|
time_scale: float = 1.0,
|
||||||
|
frequency_scale: float = 1.0,
|
||||||
|
):
|
||||||
|
self.affinity_threshold = affinity_threshold
|
||||||
|
self.affinity_function = affinity_function
|
||||||
|
self.time_buffer = time_buffer
|
||||||
|
self.frequency_buffer = frequency_buffer
|
||||||
|
self.time_scale = time_scale
|
||||||
|
self.frequency_scale = frequency_scale
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
ground_truth: Sequence[data.Geometry],
|
||||||
|
predictions: Sequence[data.Geometry],
|
||||||
|
scores: Sequence[float],
|
||||||
|
):
|
||||||
|
if self.time_buffer != 0 or self.frequency_buffer != 0:
|
||||||
|
ground_truth = [
|
||||||
|
buffer_geometry(
|
||||||
|
geometry,
|
||||||
|
time_buffer=self.time_buffer,
|
||||||
|
freq_buffer=self.frequency_buffer,
|
||||||
|
)
|
||||||
|
for geometry in ground_truth
|
||||||
|
]
|
||||||
|
|
||||||
|
predictions = [
|
||||||
|
buffer_geometry(
|
||||||
|
geometry,
|
||||||
|
time_buffer=self.time_buffer,
|
||||||
|
freq_buffer=self.frequency_buffer,
|
||||||
|
)
|
||||||
|
for geometry in predictions
|
||||||
|
]
|
||||||
|
|
||||||
|
affinity_matrix = compute_affinity_matrix(
|
||||||
|
ground_truth,
|
||||||
|
predictions,
|
||||||
|
self.affinity_function,
|
||||||
|
time_scale=self.time_scale,
|
||||||
|
frequency_scale=self.frequency_scale,
|
||||||
|
)
|
||||||
|
return select_optimal_matches(
|
||||||
|
affinity_matrix,
|
||||||
affinity_threshold=self.affinity_threshold,
|
affinity_threshold=self.affinity_threshold,
|
||||||
)
|
)
|
||||||
|
|
||||||
@matching_strategies.register(OptimalMatchConfig)
|
@matching_strategies.register(OptimalMatchConfig)
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_config(config: OptimalMatchConfig):
|
def from_config(config: OptimalMatchConfig):
|
||||||
|
affinity_function = build_affinity_function(config.affinity_function)
|
||||||
return OptimalMatcher(
|
return OptimalMatcher(
|
||||||
affinity_threshold=config.affinity_threshold,
|
affinity_threshold=config.affinity_threshold,
|
||||||
|
affinity_function=affinity_function,
|
||||||
time_buffer=config.time_buffer,
|
time_buffer=config.time_buffer,
|
||||||
frequency_buffer=config.frequency_buffer,
|
frequency_buffer=config.frequency_buffer,
|
||||||
|
time_scale=config.time_scale,
|
||||||
|
frequency_scale=config.frequency_scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -404,11 +518,100 @@ MatchConfig = Annotated[
|
|||||||
GreedyMatchConfig,
|
GreedyMatchConfig,
|
||||||
StartTimeMatchConfig,
|
StartTimeMatchConfig,
|
||||||
OptimalMatchConfig,
|
OptimalMatchConfig,
|
||||||
|
GreedyAffinityMatchConfig,
|
||||||
],
|
],
|
||||||
Field(discriminator="name"),
|
Field(discriminator="name"),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def compute_affinity_matrix(
|
||||||
|
ground_truth: Sequence[data.Geometry],
|
||||||
|
predictions: Sequence[data.Geometry],
|
||||||
|
affinity_function: AffinityFunction,
|
||||||
|
time_scale: float = 1,
|
||||||
|
frequency_scale: float = 1,
|
||||||
|
) -> np.ndarray:
|
||||||
|
# Scale geometries if necessary
|
||||||
|
if time_scale != 1 or frequency_scale != 1:
|
||||||
|
ground_truth = [
|
||||||
|
scale_geometry(geometry, time_scale, frequency_scale)
|
||||||
|
for geometry in ground_truth
|
||||||
|
]
|
||||||
|
|
||||||
|
predictions = [
|
||||||
|
scale_geometry(geometry, time_scale, frequency_scale)
|
||||||
|
for geometry in predictions
|
||||||
|
]
|
||||||
|
|
||||||
|
affinity_matrix = np.zeros((len(ground_truth), len(predictions)))
|
||||||
|
for gt_idx, gt_geometry in enumerate(ground_truth):
|
||||||
|
for pred_idx, pred_geometry in enumerate(predictions):
|
||||||
|
affinity = affinity_function(
|
||||||
|
gt_geometry,
|
||||||
|
pred_geometry,
|
||||||
|
)
|
||||||
|
affinity_matrix[gt_idx, pred_idx] = affinity
|
||||||
|
|
||||||
|
return affinity_matrix
|
||||||
|
|
||||||
|
|
||||||
|
def select_optimal_matches(
|
||||||
|
affinity_matrix: np.ndarray,
|
||||||
|
affinity_threshold: float = 0.5,
|
||||||
|
) -> Iterable[Tuple[Optional[int], Optional[int], float]]:
|
||||||
|
num_gt, num_pred = affinity_matrix.shape
|
||||||
|
gts = set(range(num_gt))
|
||||||
|
preds = set(range(num_pred))
|
||||||
|
|
||||||
|
assiged_rows, assigned_columns = linear_sum_assignment(
|
||||||
|
affinity_matrix,
|
||||||
|
maximize=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
for gt_idx, pred_idx in zip(assiged_rows, assigned_columns):
|
||||||
|
affinity = float(affinity_matrix[gt_idx, pred_idx])
|
||||||
|
|
||||||
|
if affinity <= affinity_threshold:
|
||||||
|
continue
|
||||||
|
|
||||||
|
yield gt_idx, pred_idx, affinity
|
||||||
|
gts.remove(gt_idx)
|
||||||
|
preds.remove(pred_idx)
|
||||||
|
|
||||||
|
for gt_idx in gts:
|
||||||
|
yield gt_idx, None, 0
|
||||||
|
|
||||||
|
for pred_idx in preds:
|
||||||
|
yield None, pred_idx, 0
|
||||||
|
|
||||||
|
|
||||||
|
def select_greedy_matches(
|
||||||
|
affinity_matrix: np.ndarray,
|
||||||
|
affinity_threshold: float = 0.5,
|
||||||
|
) -> Iterable[Tuple[Optional[int], Optional[int], float]]:
|
||||||
|
num_gt, num_pred = affinity_matrix.shape
|
||||||
|
unmatched_pred = set(range(num_pred))
|
||||||
|
|
||||||
|
for gt_idx in range(num_gt):
|
||||||
|
row = affinity_matrix[gt_idx]
|
||||||
|
|
||||||
|
top_pred = int(np.argmax(row))
|
||||||
|
top_affinity = float(row[top_pred])
|
||||||
|
|
||||||
|
if (
|
||||||
|
top_affinity <= affinity_threshold
|
||||||
|
or top_pred not in unmatched_pred
|
||||||
|
):
|
||||||
|
yield None, gt_idx, 0
|
||||||
|
continue
|
||||||
|
|
||||||
|
unmatched_pred.remove(top_pred)
|
||||||
|
yield top_pred, gt_idx, top_affinity
|
||||||
|
|
||||||
|
for pred_idx in unmatched_pred:
|
||||||
|
yield pred_idx, None, 0
|
||||||
|
|
||||||
|
|
||||||
def build_matcher(config: Optional[MatchConfig] = None) -> MatcherProtocol:
|
def build_matcher(config: Optional[MatchConfig] = None) -> MatcherProtocol:
|
||||||
config = config or StartTimeMatchConfig()
|
config = config or StartTimeMatchConfig()
|
||||||
return matching_strategies.build(config)
|
return matching_strategies.build(config)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user