mirror of
https://github.com/macaodha/batdetect2.git
synced 2026-01-09 16:59:33 +01:00
Compute mAP
This commit is contained in:
parent
d80377981e
commit
8628133fd7
@ -47,7 +47,7 @@ def evaluate(
|
||||
audio_loader=audio_loader,
|
||||
labeller=labeller,
|
||||
preprocessor=preprocessor,
|
||||
config=config.train,
|
||||
config=config.train.val_loader,
|
||||
num_workers=num_workers,
|
||||
)
|
||||
|
||||
@ -67,7 +67,8 @@ def evaluate(
|
||||
predictions = get_raw_predictions(
|
||||
outputs,
|
||||
start_times=[
|
||||
clip_annotation.clip for clip_annotation in clip_annotations
|
||||
clip_annotation.clip.start_time
|
||||
for clip_annotation in clip_annotations
|
||||
],
|
||||
targets=targets,
|
||||
postprocessor=model.postprocessor,
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
from typing import Dict, List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn import metrics
|
||||
from sklearn.preprocessing import label_binarize
|
||||
@ -19,9 +20,8 @@ class DetectionAveragePrecision(MetricsProtocol):
|
||||
|
||||
|
||||
class ClassificationMeanAveragePrecision(MetricsProtocol):
|
||||
def __init__(self, class_names: List[str], per_class: bool = True):
|
||||
def __init__(self, class_names: List[str]):
|
||||
self.class_names = class_names
|
||||
self.per_class = per_class
|
||||
|
||||
def __call__(self, matches: List[MatchEvaluation]) -> Dict[str, float]:
|
||||
y_true = label_binarize(
|
||||
@ -40,14 +40,8 @@ class ClassificationMeanAveragePrecision(MetricsProtocol):
|
||||
for match in matches
|
||||
]
|
||||
).fillna(0)
|
||||
mAP = metrics.average_precision_score(y_true, y_pred[self.class_names])
|
||||
|
||||
ret = {
|
||||
"classification_mAP": float(mAP),
|
||||
}
|
||||
|
||||
if not self.per_class:
|
||||
return ret
|
||||
ret = {}
|
||||
|
||||
for class_index, class_name in enumerate(self.class_names):
|
||||
y_true_class = y_true[:, class_index]
|
||||
@ -58,6 +52,10 @@ class ClassificationMeanAveragePrecision(MetricsProtocol):
|
||||
)
|
||||
ret[f"classification_AP/{class_name}"] = float(class_ap)
|
||||
|
||||
ret["classification_mAP"] = np.mean(
|
||||
[value for value in ret.values() if value != 0]
|
||||
)
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user