Remove test migration

This commit is contained in:
mbsantiago 2025-04-22 09:00:44 +01:00
parent 257e1e01bf
commit 8a463e3942
3 changed files with 0 additions and 241 deletions

View File

@ -1,156 +0,0 @@
from pathlib import Path
import numpy as np
import pytest
from soundevent import data
from batdetect2 import preprocess
from batdetect2.utils import audio_utils
ROOT_DIR = Path(__file__).parent.parent.parent
EXAMPLE_AUDIO = ROOT_DIR / "example_data" / "audio"
TEST_AUDIO = ROOT_DIR / "tests" / "data"
TEST_FILES = [
EXAMPLE_AUDIO / "20170701_213954-MYOMYS-LR_0_0.5.wav",
EXAMPLE_AUDIO / "20180530_213516-EPTSER-LR_0_0.5.wav",
EXAMPLE_AUDIO / "20180627_215323-RHIFER-LR_0_0.5.wav",
TEST_AUDIO / "20230322_172000_selec2.wav",
]
@pytest.mark.parametrize("audio_file", TEST_FILES)
@pytest.mark.parametrize("scale", [True, False])
def test_audio_loading_hasnt_changed(
audio_file,
scale,
):
time_expansion = 1
target_sampling_rate = 256_000
recording = data.Recording.from_file(
audio_file,
time_expansion=time_expansion,
)
clip = data.Clip(
recording=recording,
start_time=0,
end_time=recording.duration,
)
_, audio_original = audio_utils.load_audio(
audio_file,
time_expansion,
target_samp_rate=target_sampling_rate,
scale=scale,
)
audio_new = preprocess.load_clip_audio(
clip,
config=preprocess.AudioConfig(
resample=preprocess.ResampleConfig(
samplerate=target_sampling_rate,
),
center=scale,
scale=scale,
duration=None,
),
dtype=np.float32,
)
assert audio_original.shape == audio_new.shape
assert audio_original.dtype == audio_new.dtype
assert np.isclose(audio_original, audio_new.data).all()
@pytest.mark.parametrize("audio_file", TEST_FILES)
@pytest.mark.parametrize("spec_scale", ["log", "pcen", "amplitude"])
@pytest.mark.parametrize("denoise_spec_avg", [True, False])
@pytest.mark.parametrize("max_scale_spec", [True, False])
@pytest.mark.parametrize("fft_win_length", [512 / 256_000, 1024 / 256_000])
def test_spectrogram_generation_hasnt_changed(
audio_file,
spec_scale,
denoise_spec_avg,
max_scale_spec,
fft_win_length,
):
time_expansion = 1
target_sampling_rate = 256_000
min_freq = 10_000
max_freq = 120_000
fft_overlap = 0.75
if spec_scale == "log":
scale = preprocess.LogScaleConfig()
elif spec_scale == "pcen":
scale = preprocess.PcenConfig()
else:
scale = preprocess.AmplitudeScaleConfig()
config = preprocess.SpectrogramConfig(
stft=preprocess.STFTConfig(
window_overlap=fft_overlap,
window_duration=fft_win_length,
),
frequencies=preprocess.FrequencyConfig(
min_freq=min_freq,
max_freq=max_freq,
),
scale=scale,
spectral_mean_substraction=denoise_spec_avg,
size=None,
peak_normalize=max_scale_spec,
)
recording = data.Recording.from_file(
audio_file,
time_expansion=time_expansion,
)
clip = data.Clip(
recording=recording,
start_time=0,
end_time=recording.duration,
)
audio = preprocess.load_clip_audio(
clip,
config=preprocess.AudioConfig(
resample=preprocess.ResampleConfig(
samplerate=target_sampling_rate,
)
),
)
spec_original, _ = audio_utils.generate_spectrogram(
audio.data,
sampling_rate=target_sampling_rate,
params=dict(
fft_win_length=fft_win_length,
fft_overlap=fft_overlap,
max_freq=max_freq,
min_freq=min_freq,
spec_scale=spec_scale,
denoise_spec_avg=denoise_spec_avg,
max_scale_spec=max_scale_spec,
),
)
new_spec = preprocess.compute_spectrogram(
audio,
config=config,
dtype=np.float32,
)
assert spec_original.shape == new_spec.shape
assert spec_original.dtype == new_spec.dtype
# Check that the spectrogram content is the same within a tolerance of 1e-5
# for each element of the spectrogram at least 99.5% of the time.
# NOTE: The pcen function is not the same as the one in the original code
# thus the need for a tolerance, but the values are still very similar.
# NOTE: The original spectrogram is flipped vertically
assert (
np.isclose(spec_original, np.flipud(new_spec.data), atol=1e-5).mean()
> 0.995
)

View File

@ -1,85 +0,0 @@
import json
from pathlib import Path
from typing import List
import numpy as np
import pytest
from batdetect2.compat.params import get_training_preprocessing_config
from batdetect2.data import BatDetect2FilesAnnotations, load_annotated_dataset
from batdetect2.train.preprocess import generate_train_example
@pytest.fixture
def regression_dir(data_dir: Path) -> Path:
dir = data_dir / "regression"
assert dir.exists()
return dir
def test_can_generate_similar_training_inputs(
example_audio_dir: Path,
example_audio_files: List[Path],
example_anns_dir: Path,
regression_dir: Path,
):
old_parameters = json.loads((regression_dir / "params.json").read_text())
config = get_training_preprocessing_config(old_parameters)
assert config is not None
for audio_file in example_audio_files:
example_file = regression_dir / f"{audio_file.name}.npz"
dataset = np.load(example_file)
spec = dataset["spec"][0]
detection_mask = dataset["detection_mask"][0]
size_mask = dataset["size_mask"]
class_mask = dataset["class_mask"]
project = load_annotated_dataset(
BatDetect2FilesAnnotations(
name="test",
annotations_dir=example_anns_dir,
audio_dir=example_audio_dir,
)
)
clip_annotation = next(
ann
for ann in project.clip_annotations
if ann.clip.recording.path == audio_file
)
new_dataset = generate_train_example(
clip_annotation,
preprocessing_config=config.preprocessing,
target_config=config.target,
label_config=config.labels,
)
new_spec = new_dataset["spectrogram"].values
new_detection_mask = new_dataset["detection"].values
new_size_mask = new_dataset["size"].values
new_class_mask = new_dataset["class"].values
assert spec.shape == new_spec.shape
assert detection_mask.shape == new_detection_mask.shape
assert size_mask.shape == new_size_mask.shape
assert class_mask.shape[1:] == new_class_mask.shape[1:]
assert class_mask.shape[0] == new_class_mask.shape[0] + 1
x_new, y_new = np.nonzero(new_size_mask.max(axis=0))
x_orig, y_orig = np.nonzero(np.flipud(size_mask.max(axis=0)))
assert (x_new == x_orig).all()
# NOTE: a difference of 1 pixel is due to discrepancies on how
# frequency bins are interpreted. Shouldn't be an issue
assert (y_new == y_orig + 1).all()
width_new, height_new = new_size_mask[:, x_new, y_new]
width_orig, height_orig = np.flip(size_mask, axis=1)[:, x_orig, y_orig]
assert (np.floor(width_new) == width_orig).all()
assert (np.ceil(height_new) == height_orig).all()