Temporary remove compat params module

This commit is contained in:
mbsantiago 2025-04-22 09:01:58 +01:00
parent 285c6a3347
commit 9fc713d390

View File

@ -1,152 +1,152 @@
from batdetect2.preprocess import (
AmplitudeScaleConfig,
AudioConfig,
FrequencyConfig,
LogScaleConfig,
PcenConfig,
PreprocessingConfig,
ResampleConfig,
Scales,
SpecSizeConfig,
SpectrogramConfig,
STFTConfig,
)
from batdetect2.preprocess.spectrogram import get_spectrogram_resolution
from batdetect2.targets import (
LabelConfig,
TagInfo,
TargetConfig,
)
from batdetect2.train.preprocess import (
TrainPreprocessingConfig,
)
def get_spectrogram_scale(scale: str) -> Scales:
if scale == "pcen":
return PcenConfig()
if scale == "log":
return LogScaleConfig()
return AmplitudeScaleConfig()
def get_preprocessing_config(params: dict) -> PreprocessingConfig:
return PreprocessingConfig(
audio=AudioConfig(
resample=ResampleConfig(
samplerate=params["target_samp_rate"],
method="poly",
),
scale=params["scale_raw_audio"],
center=params["scale_raw_audio"],
duration=None,
),
spectrogram=SpectrogramConfig(
stft=STFTConfig(
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
window_fn="hann",
),
frequencies=FrequencyConfig(
min_freq=params["min_freq"],
max_freq=params["max_freq"],
),
scale=get_spectrogram_scale(params["spec_scale"]),
spectral_mean_substraction=params["denoise_spec_avg"],
size=SpecSizeConfig(
height=params["spec_height"],
resize_factor=params["resize_factor"],
),
peak_normalize=params["max_scale_spec"],
),
)
def get_training_preprocessing_config(
params: dict,
) -> TrainPreprocessingConfig:
generic = params["generic_class"][0]
preprocessing = get_preprocessing_config(params)
freq_bin_width, time_bin_width = get_spectrogram_resolution(
preprocessing.spectrogram
)
return TrainPreprocessingConfig(
preprocessing=preprocessing,
target=TargetConfig(
classes=[
TagInfo(key="class", value=class_name)
for class_name in params["class_names"]
],
generic_class=TagInfo(
key="class",
value=generic,
),
include=[
TagInfo(key="event", value=event)
for event in params["events_of_interest"]
],
exclude=[
TagInfo(key="class", value=value)
for value in params["classes_to_ignore"]
],
),
labels=LabelConfig(
position="bottom-left",
time_scale=1 / time_bin_width,
frequency_scale=1 / freq_bin_width,
sigma=params["target_sigma"],
),
)
# 'standardize_classs_names_ip',
# 'convert_to_genus',
# 'genus_mapping',
# 'standardize_classs_names',
# 'genus_names',
# ['data_dir',
# 'ann_dir',
# 'train_split',
# 'model_name',
# 'num_filters',
# 'experiment',
# 'model_file_name',
# 'op_im_dir',
# 'op_im_dir_test',
# 'notes',
# 'spec_divide_factor',
# 'detection_overlap',
# 'ignore_start_end',
# 'detection_threshold',
# 'nms_kernel_size',
# 'nms_top_k_per_sec',
# 'aug_prob',
# 'augment_at_train',
# 'augment_at_train_combine',
# 'echo_max_delay',
# 'stretch_squeeze_delta',
# 'mask_max_time_perc',
# 'mask_max_freq_perc',
# 'spec_amp_scaling',
# 'aug_sampling_rates',
# 'train_loss',
# 'det_loss_weight',
# 'size_loss_weight',
# 'class_loss_weight',
# 'individual_loss_weight',
# 'emb_dim',
# 'lr',
# 'batch_size',
# 'num_workers',
# 'num_epochs',
# 'num_eval_epochs',
# 'device',
# 'save_test_image_during_train',
# 'save_test_image_after_train',
# 'train_sets',
# 'test_sets',
# 'class_inv_freq',
# 'ip_height']
# from batdetect2.preprocess import (
# AmplitudeScaleConfig,
# AudioConfig,
# FrequencyConfig,
# LogScaleConfig,
# PcenConfig,
# PreprocessingConfig,
# ResampleConfig,
# Scales,
# SpecSizeConfig,
# SpectrogramConfig,
# STFTConfig,
# )
# from batdetect2.preprocess.spectrogram import get_spectrogram_resolution
# from batdetect2.targets import (
# LabelConfig,
# TagInfo,
# TargetConfig,
# )
# from batdetect2.train.preprocess import (
# TrainPreprocessingConfig,
# )
#
#
# def get_spectrogram_scale(scale: str) -> Scales:
# if scale == "pcen":
# return PcenConfig()
# if scale == "log":
# return LogScaleConfig()
# return AmplitudeScaleConfig()
#
#
# def get_preprocessing_config(params: dict) -> PreprocessingConfig:
# return PreprocessingConfig(
# audio=AudioConfig(
# resample=ResampleConfig(
# samplerate=params["target_samp_rate"],
# method="poly",
# ),
# scale=params["scale_raw_audio"],
# center=params["scale_raw_audio"],
# duration=None,
# ),
# spectrogram=SpectrogramConfig(
# stft=STFTConfig(
# window_duration=params["fft_win_length"],
# window_overlap=params["fft_overlap"],
# window_fn="hann",
# ),
# frequencies=FrequencyConfig(
# min_freq=params["min_freq"],
# max_freq=params["max_freq"],
# ),
# scale=get_spectrogram_scale(params["spec_scale"]),
# spectral_mean_substraction=params["denoise_spec_avg"],
# size=SpecSizeConfig(
# height=params["spec_height"],
# resize_factor=params["resize_factor"],
# ),
# peak_normalize=params["max_scale_spec"],
# ),
# )
#
#
# def get_training_preprocessing_config(
# params: dict,
# ) -> TrainPreprocessingConfig:
# generic = params["generic_class"][0]
# preprocessing = get_preprocessing_config(params)
#
# freq_bin_width, time_bin_width = get_spectrogram_resolution(
# preprocessing.spectrogram
# )
#
# return TrainPreprocessingConfig(
# preprocessing=preprocessing,
# target=TargetConfig(
# classes=[
# TagInfo(key="class", value=class_name)
# for class_name in params["class_names"]
# ],
# generic_class=TagInfo(
# key="class",
# value=generic,
# ),
# include=[
# TagInfo(key="event", value=event)
# for event in params["events_of_interest"]
# ],
# exclude=[
# TagInfo(key="class", value=value)
# for value in params["classes_to_ignore"]
# ],
# ),
# labels=LabelConfig(
# position="bottom-left",
# time_scale=1 / time_bin_width,
# frequency_scale=1 / freq_bin_width,
# sigma=params["target_sigma"],
# ),
# )
#
#
# # 'standardize_classs_names_ip',
# # 'convert_to_genus',
# # 'genus_mapping',
# # 'standardize_classs_names',
# # 'genus_names',
#
# # ['data_dir',
# # 'ann_dir',
# # 'train_split',
# # 'model_name',
# # 'num_filters',
# # 'experiment',
# # 'model_file_name',
# # 'op_im_dir',
# # 'op_im_dir_test',
# # 'notes',
# # 'spec_divide_factor',
# # 'detection_overlap',
# # 'ignore_start_end',
# # 'detection_threshold',
# # 'nms_kernel_size',
# # 'nms_top_k_per_sec',
# # 'aug_prob',
# # 'augment_at_train',
# # 'augment_at_train_combine',
# # 'echo_max_delay',
# # 'stretch_squeeze_delta',
# # 'mask_max_time_perc',
# # 'mask_max_freq_perc',
# # 'spec_amp_scaling',
# # 'aug_sampling_rates',
# # 'train_loss',
# # 'det_loss_weight',
# # 'size_loss_weight',
# # 'class_loss_weight',
# # 'individual_loss_weight',
# # 'emb_dim',
# # 'lr',
# # 'batch_size',
# # 'num_workers',
# # 'num_epochs',
# # 'num_eval_epochs',
# # 'device',
# # 'save_test_image_during_train',
# # 'save_test_image_after_train',
# # 'train_sets',
# # 'test_sets',
# # 'class_inv_freq',
# # 'ip_height']