mirror of
https://github.com/macaodha/batdetect2.git
synced 2026-01-10 00:59:34 +01:00
Plot anchor points
This commit is contained in:
parent
d25efdad10
commit
ed76ec24b6
@ -4,7 +4,9 @@ from matplotlib.axes import Axes
|
||||
from soundevent import data, plot
|
||||
|
||||
from batdetect2.plotting.clips import plot_clip
|
||||
from batdetect2.plotting.common import create_ax
|
||||
from batdetect2.typing.preprocess import PreprocessorProtocol
|
||||
from batdetect2.typing.targets import TargetProtocol
|
||||
|
||||
__all__ = [
|
||||
"plot_clip_annotation",
|
||||
@ -43,3 +45,31 @@ def plot_clip_annotation(
|
||||
facecolor="none" if not fill else None,
|
||||
)
|
||||
return ax
|
||||
|
||||
|
||||
def plot_anchor_points(
|
||||
clip_annotation: data.ClipAnnotation,
|
||||
targets: TargetProtocol,
|
||||
figsize: Optional[Tuple[int, int]] = None,
|
||||
ax: Optional[Axes] = None,
|
||||
size: int = 1,
|
||||
color: str = "red",
|
||||
marker: str = "x",
|
||||
alpha: float = 1,
|
||||
) -> Axes:
|
||||
ax = create_ax(ax=ax, figsize=figsize)
|
||||
|
||||
positions = []
|
||||
|
||||
for sound_event in clip_annotation.sound_events:
|
||||
if not targets.filter(sound_event):
|
||||
continue
|
||||
|
||||
sound_event = targets.transform(sound_event)
|
||||
|
||||
position, _ = targets.encode_roi(sound_event)
|
||||
positions.append(position)
|
||||
|
||||
X, Y = zip(*positions)
|
||||
ax.scatter(X, Y, s=size, c=color, marker=marker, alpha=alpha)
|
||||
return ax
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
"""General plotting utilities."""
|
||||
|
||||
from typing import Optional, Tuple
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
@ -25,7 +25,7 @@ def create_ax(
|
||||
|
||||
|
||||
def plot_spectrogram(
|
||||
spec: torch.Tensor,
|
||||
spec: Union[torch.Tensor, np.ndarray],
|
||||
start_time: float,
|
||||
end_time: float,
|
||||
min_freq: float,
|
||||
@ -34,12 +34,15 @@ def plot_spectrogram(
|
||||
figsize: Optional[Tuple[int, int]] = None,
|
||||
cmap="gray",
|
||||
) -> axes.Axes:
|
||||
if isinstance(spec, torch.Tensor):
|
||||
spec = spec.numpy()
|
||||
|
||||
ax = create_ax(ax=ax, figsize=figsize)
|
||||
|
||||
ax.pcolormesh(
|
||||
np.linspace(start_time, end_time, spec.shape[-1], endpoint=False),
|
||||
np.linspace(min_freq, max_freq, spec.shape[-2], endpoint=False),
|
||||
spec.numpy(),
|
||||
np.linspace(start_time, end_time, spec.shape[-1] + 1, endpoint=True),
|
||||
np.linspace(min_freq, max_freq, spec.shape[-2] + 1, endpoint=True),
|
||||
spec,
|
||||
cmap=cmap,
|
||||
)
|
||||
return ax
|
||||
|
||||
@ -62,7 +62,7 @@ class LabelConfig(BaseConfig):
|
||||
diffuse targets.
|
||||
"""
|
||||
|
||||
sigma: float = 3.0
|
||||
sigma: float = 2.0
|
||||
|
||||
|
||||
def build_clip_labeler(
|
||||
@ -174,7 +174,7 @@ def generate_clip_label(
|
||||
|
||||
|
||||
def map_to_pixels(x, size, min_val, max_val) -> int:
|
||||
return int(np.floor(np.interp(x, [min_val, max_val], [0, size])))
|
||||
return int(np.interp(x, [min_val, max_val], [0, size]))
|
||||
|
||||
|
||||
def generate_heatmaps(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user