Starting to create dataset builders

This commit is contained in:
mbsantiago 2024-11-19 22:54:26 +00:00
parent 9cf159efff
commit f6cdd4e87e
11 changed files with 174 additions and 45 deletions

View File

@ -1,5 +1,6 @@
"""Compatibility functions between old and new data structures."""
import json
import os
import uuid
from pathlib import Path
@ -17,7 +18,7 @@ PathLike = Union[Path, str, os.PathLike]
__all__ = [
"convert_to_annotation_group",
"load_annotation_project",
"load_annotation_project_from_dir",
]
SPECIES_TAG_KEY = "species"
@ -298,7 +299,38 @@ def list_file_annotations(path: PathLike) -> List[Path]:
return [file for file in path.glob("*.json")]
def load_annotation_project(
def load_annotation_project_from_file(
path: PathLike,
name: Optional[str] = None,
audio_dir: Optional[PathLike] = None,
) -> data.AnnotationProject:
old_annotations = json.loads(Path(path).read_text())
annotations = []
tasks = []
for ann in old_annotations:
try:
ann = FileAnnotation.model_validate(ann)
except ValueError:
continue
try:
clip = file_annotation_to_clip(ann, audio_dir=audio_dir)
except FileNotFoundError:
continue
annotations.append(file_annotation_to_clip_annotation(ann, clip))
tasks.append(file_annotation_to_annotation_task(ann, clip))
return data.AnnotationProject(
name=name or str(path),
clip_annotations=annotations,
tasks=tasks,
)
def load_annotation_project_from_dir(
path: PathLike,
name: Optional[str] = None,
audio_dir: Optional[PathLike] = None,

View File

@ -1,5 +1,26 @@
from typing import Optional, Type, TypeVar
import yaml
from pydantic import BaseModel, ConfigDict
from soundevent.data import PathLike
class BaseConfig(BaseModel):
model_config = ConfigDict(extra="forbid")
T = TypeVar("T", bound=BaseModel)
def load_config(
path: PathLike,
schema: Type[T],
field: Optional[str] = None,
) -> T:
with open(path, "r") as file:
config = yaml.safe_load(file)
if field:
config = config[field]
return schema.model_validate(config)

87
batdetect2/data.py Normal file
View File

@ -0,0 +1,87 @@
from pathlib import Path
from typing import List, Literal, Tuple, Union
from pydantic import Field
from soundevent import data, io
from batdetect2.compat.data import (
load_annotation_project_from_dir,
load_annotation_project_from_file,
)
from batdetect2.configs import BaseConfig
class BatDetect2AnnotationFiles(BaseConfig):
format: Literal["batdetect2"] = "batdetect2"
path: Path
class BatDetect2AnnotationFile(BaseConfig):
format: Literal["batdetect2_file"] = "batdetect2_file"
path: Path
class AOEFAnnotationFile(BaseConfig):
format: Literal["aoef"] = "aoef"
annotations_file: Path
AnnotationFormats = Union[
BatDetect2AnnotationFiles,
BatDetect2AnnotationFile,
AOEFAnnotationFile,
]
class DatasetInfo(BaseConfig):
name: str
audio_dir: Path
annotations: AnnotationFormats = Field(discriminator="format")
class DatasetsConfig(BaseConfig):
train: List[DatasetInfo] = Field(default_factory=list)
test: List[DatasetInfo] = Field(default_factory=list)
def load_dataset(info: DatasetInfo) -> data.AnnotationProject:
if info.annotations.format == "batdetect2":
return load_annotation_project_from_dir(
info.annotations.path,
name=info.name,
audio_dir=info.audio_dir,
)
if info.annotations.format == "batdetect2_file":
return load_annotation_project_from_file(
info.annotations.path,
name=info.name,
audio_dir=info.audio_dir,
)
if info.annotations.format == "aoef":
return io.load( # type: ignore
info.annotations.annotations_file,
audio_dir=info.audio_dir,
)
raise NotImplementedError(
f"Unknown annotation format: {info.annotations.name}"
)
def load_datasets(
config: DatasetsConfig,
) -> Tuple[List[data.ClipAnnotation], List[data.ClipAnnotation]]:
test_annotations = []
train_annotations = []
for dataset in config.train:
project = load_dataset(dataset)
train_annotations.extend(project.clip_annotations)
for dataset in config.test:
project = load_dataset(dataset)
test_annotations.extend(project.clip_annotations)
return train_annotations, test_annotations

View File

@ -1,33 +0,0 @@
from typing import Callable, Generic, Iterable, List, TypeVar
from soundevent import data
from torch.utils.data import Dataset
__all__ = [
"ClipDataset",
]
E = TypeVar("E")
class ClipDataset(Dataset, Generic[E]):
clips: List[data.Clip]
transform: Callable[[data.Clip], E]
def __init__(
self,
clips: Iterable[data.Clip],
transform: Callable[[data.Clip], E],
name: str = "ClipDataset",
):
self.clips = list(clips)
self.transform = transform
self.name = name
def __len__(self) -> int:
return len(self.clips)
def __getitem__(self, idx: int) -> E:
return self.transform(self.clips[idx])

View File

@ -49,6 +49,7 @@ class PreprocessingConfig(BaseModel):
def preprocess_audio_clip(
clip: data.Clip,
config: Optional[PreprocessingConfig] = None,
audio_dir: Optional[data.PathLike] = None,
) -> xr.DataArray:
"""Preprocesses audio clip to generate spectrogram.
@ -66,5 +67,5 @@ def preprocess_audio_clip(
"""
config = config or PreprocessingConfig()
wav = load_clip_audio(clip, config=config.audio)
wav = load_clip_audio(clip, config=config.audio, audio_dir=audio_dir)
return compute_spectrogram(wav, config=config.spectrogram)

View File

@ -30,15 +30,22 @@ class AudioConfig(BaseConfig):
def load_file_audio(
path: data.PathLike,
config: Optional[AudioConfig] = None,
audio_dir: Optional[data.PathLike] = None,
dtype: DTypeLike = np.float32,
) -> xr.DataArray:
recording = data.Recording.from_file(path)
return load_recording_audio(recording, config=config, dtype=dtype)
return load_recording_audio(
recording,
config=config,
dtype=dtype,
audio_dir=audio_dir,
)
def load_recording_audio(
recording: data.Recording,
config: Optional[AudioConfig] = None,
audio_dir: Optional[data.PathLike] = None,
dtype: DTypeLike = np.float32,
) -> xr.DataArray:
clip = data.Clip(
@ -46,17 +53,25 @@ def load_recording_audio(
start_time=0,
end_time=recording.duration,
)
return load_clip_audio(clip, config=config, dtype=dtype)
return load_clip_audio(
clip,
config=config,
dtype=dtype,
audio_dir=audio_dir,
)
def load_clip_audio(
clip: data.Clip,
config: Optional[AudioConfig] = None,
audio_dir: Optional[data.PathLike] = None,
dtype: DTypeLike = np.float32,
) -> xr.DataArray:
config = config or AudioConfig()
wav = audio.load_clip(clip).sel(channel=0).astype(dtype)
wav = (
audio.load_clip(clip, audio_dir=audio_dir).sel(channel=0).astype(dtype)
)
if config.duration is not None:
wav = adjust_audio_duration(wav, duration=config.duration)

View File

@ -28,10 +28,6 @@ class TrainExample(NamedTuple):
idx: torch.Tensor
def get_files(directory: PathLike, extension: str = ".nc") -> Sequence[Path]:
return list(Path(directory).glob(f"*{extension}"))
class LabeledDataset(Dataset):
def __init__(
self,
@ -92,3 +88,7 @@ class LabeledDataset(Dataset):
return data.ClipAnnotation.model_validate_json(
self.get_dataset(idx).attrs["clip_annotation"]
)
def get_files(directory: PathLike, extension: str = ".nc") -> Sequence[Path]:
return list(Path(directory).glob(f"*{extension}"))

View File

@ -26,6 +26,8 @@ dependencies = [
"onnx>=1.16.0",
"lightning[extra]>=2.2.2",
"tensorboard>=2.16.2",
"omegaconf>=2.3.0",
"pyyaml>=6.0.2",
]
requires-python = ">=3.9,<3.13"
readme = "README.md"

View File

@ -5,7 +5,7 @@ from typing import List
import numpy as np
import pytest
from batdetect2.compat.data import load_annotation_project
from batdetect2.compat.data import load_annotation_project_from_dir
from batdetect2.compat.params import get_training_preprocessing_config
from batdetect2.train.preprocess import generate_train_example
@ -36,7 +36,7 @@ def test_can_generate_similar_training_inputs(
size_mask = dataset["size_mask"]
class_mask = dataset["class_mask"]
project = load_annotation_project(
project = load_annotation_project_from_dir(
example_anns_dir,
audio_dir=example_audio_dir,
)

4
uv.lock generated
View File

@ -198,9 +198,11 @@ dependencies = [
{ name = "matplotlib" },
{ name = "netcdf4" },
{ name = "numpy" },
{ name = "omegaconf" },
{ name = "onnx" },
{ name = "pandas" },
{ name = "pytorch-lightning" },
{ name = "pyyaml" },
{ name = "scikit-learn" },
{ name = "scipy" },
{ name = "soundevent", extra = ["audio", "geometry", "plot"] },
@ -231,9 +233,11 @@ requires-dist = [
{ name = "matplotlib", specifier = ">=3.7.1" },
{ name = "netcdf4", specifier = ">=1.6.5" },
{ name = "numpy", specifier = ">=1.23.5" },
{ name = "omegaconf", specifier = ">=2.3.0" },
{ name = "onnx", specifier = ">=1.16.0" },
{ name = "pandas", specifier = ">=1.5.3" },
{ name = "pytorch-lightning", specifier = ">=2.2.2" },
{ name = "pyyaml", specifier = ">=6.0.2" },
{ name = "scikit-learn", specifier = ">=1.2.2" },
{ name = "scipy", specifier = ">=1.10.1" },
{ name = "soundevent", extras = ["audio", "geometry", "plot"], specifier = ">=2.3" },