mirror of
https://github.com/macaodha/batdetect2.git
synced 2025-06-29 14:41:58 +02:00
Starting to create dataset builders
This commit is contained in:
parent
9cf159efff
commit
f6cdd4e87e
@ -1,5 +1,6 @@
|
||||
"""Compatibility functions between old and new data structures."""
|
||||
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
@ -17,7 +18,7 @@ PathLike = Union[Path, str, os.PathLike]
|
||||
|
||||
__all__ = [
|
||||
"convert_to_annotation_group",
|
||||
"load_annotation_project",
|
||||
"load_annotation_project_from_dir",
|
||||
]
|
||||
|
||||
SPECIES_TAG_KEY = "species"
|
||||
@ -298,7 +299,38 @@ def list_file_annotations(path: PathLike) -> List[Path]:
|
||||
return [file for file in path.glob("*.json")]
|
||||
|
||||
|
||||
def load_annotation_project(
|
||||
def load_annotation_project_from_file(
|
||||
path: PathLike,
|
||||
name: Optional[str] = None,
|
||||
audio_dir: Optional[PathLike] = None,
|
||||
) -> data.AnnotationProject:
|
||||
old_annotations = json.loads(Path(path).read_text())
|
||||
|
||||
annotations = []
|
||||
tasks = []
|
||||
|
||||
for ann in old_annotations:
|
||||
try:
|
||||
ann = FileAnnotation.model_validate(ann)
|
||||
except ValueError:
|
||||
continue
|
||||
|
||||
try:
|
||||
clip = file_annotation_to_clip(ann, audio_dir=audio_dir)
|
||||
except FileNotFoundError:
|
||||
continue
|
||||
|
||||
annotations.append(file_annotation_to_clip_annotation(ann, clip))
|
||||
tasks.append(file_annotation_to_annotation_task(ann, clip))
|
||||
|
||||
return data.AnnotationProject(
|
||||
name=name or str(path),
|
||||
clip_annotations=annotations,
|
||||
tasks=tasks,
|
||||
)
|
||||
|
||||
|
||||
def load_annotation_project_from_dir(
|
||||
path: PathLike,
|
||||
name: Optional[str] = None,
|
||||
audio_dir: Optional[PathLike] = None,
|
||||
|
@ -1,5 +1,26 @@
|
||||
from typing import Optional, Type, TypeVar
|
||||
|
||||
import yaml
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
from soundevent.data import PathLike
|
||||
|
||||
|
||||
class BaseConfig(BaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
|
||||
|
||||
def load_config(
|
||||
path: PathLike,
|
||||
schema: Type[T],
|
||||
field: Optional[str] = None,
|
||||
) -> T:
|
||||
with open(path, "r") as file:
|
||||
config = yaml.safe_load(file)
|
||||
|
||||
if field:
|
||||
config = config[field]
|
||||
|
||||
return schema.model_validate(config)
|
||||
|
87
batdetect2/data.py
Normal file
87
batdetect2/data.py
Normal file
@ -0,0 +1,87 @@
|
||||
from pathlib import Path
|
||||
from typing import List, Literal, Tuple, Union
|
||||
|
||||
from pydantic import Field
|
||||
from soundevent import data, io
|
||||
|
||||
from batdetect2.compat.data import (
|
||||
load_annotation_project_from_dir,
|
||||
load_annotation_project_from_file,
|
||||
)
|
||||
from batdetect2.configs import BaseConfig
|
||||
|
||||
|
||||
class BatDetect2AnnotationFiles(BaseConfig):
|
||||
format: Literal["batdetect2"] = "batdetect2"
|
||||
path: Path
|
||||
|
||||
|
||||
class BatDetect2AnnotationFile(BaseConfig):
|
||||
format: Literal["batdetect2_file"] = "batdetect2_file"
|
||||
path: Path
|
||||
|
||||
|
||||
class AOEFAnnotationFile(BaseConfig):
|
||||
format: Literal["aoef"] = "aoef"
|
||||
annotations_file: Path
|
||||
|
||||
|
||||
AnnotationFormats = Union[
|
||||
BatDetect2AnnotationFiles,
|
||||
BatDetect2AnnotationFile,
|
||||
AOEFAnnotationFile,
|
||||
]
|
||||
|
||||
|
||||
class DatasetInfo(BaseConfig):
|
||||
name: str
|
||||
audio_dir: Path
|
||||
annotations: AnnotationFormats = Field(discriminator="format")
|
||||
|
||||
|
||||
class DatasetsConfig(BaseConfig):
|
||||
train: List[DatasetInfo] = Field(default_factory=list)
|
||||
test: List[DatasetInfo] = Field(default_factory=list)
|
||||
|
||||
|
||||
def load_dataset(info: DatasetInfo) -> data.AnnotationProject:
|
||||
if info.annotations.format == "batdetect2":
|
||||
return load_annotation_project_from_dir(
|
||||
info.annotations.path,
|
||||
name=info.name,
|
||||
audio_dir=info.audio_dir,
|
||||
)
|
||||
|
||||
if info.annotations.format == "batdetect2_file":
|
||||
return load_annotation_project_from_file(
|
||||
info.annotations.path,
|
||||
name=info.name,
|
||||
audio_dir=info.audio_dir,
|
||||
)
|
||||
|
||||
if info.annotations.format == "aoef":
|
||||
return io.load( # type: ignore
|
||||
info.annotations.annotations_file,
|
||||
audio_dir=info.audio_dir,
|
||||
)
|
||||
|
||||
raise NotImplementedError(
|
||||
f"Unknown annotation format: {info.annotations.name}"
|
||||
)
|
||||
|
||||
|
||||
def load_datasets(
|
||||
config: DatasetsConfig,
|
||||
) -> Tuple[List[data.ClipAnnotation], List[data.ClipAnnotation]]:
|
||||
test_annotations = []
|
||||
train_annotations = []
|
||||
|
||||
for dataset in config.train:
|
||||
project = load_dataset(dataset)
|
||||
train_annotations.extend(project.clip_annotations)
|
||||
|
||||
for dataset in config.test:
|
||||
project = load_dataset(dataset)
|
||||
test_annotations.extend(project.clip_annotations)
|
||||
|
||||
return train_annotations, test_annotations
|
@ -1,33 +0,0 @@
|
||||
from typing import Callable, Generic, Iterable, List, TypeVar
|
||||
|
||||
from soundevent import data
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
__all__ = [
|
||||
"ClipDataset",
|
||||
]
|
||||
|
||||
|
||||
E = TypeVar("E")
|
||||
|
||||
|
||||
class ClipDataset(Dataset, Generic[E]):
|
||||
clips: List[data.Clip]
|
||||
|
||||
transform: Callable[[data.Clip], E]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
clips: Iterable[data.Clip],
|
||||
transform: Callable[[data.Clip], E],
|
||||
name: str = "ClipDataset",
|
||||
):
|
||||
self.clips = list(clips)
|
||||
self.transform = transform
|
||||
self.name = name
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.clips)
|
||||
|
||||
def __getitem__(self, idx: int) -> E:
|
||||
return self.transform(self.clips[idx])
|
@ -49,6 +49,7 @@ class PreprocessingConfig(BaseModel):
|
||||
def preprocess_audio_clip(
|
||||
clip: data.Clip,
|
||||
config: Optional[PreprocessingConfig] = None,
|
||||
audio_dir: Optional[data.PathLike] = None,
|
||||
) -> xr.DataArray:
|
||||
"""Preprocesses audio clip to generate spectrogram.
|
||||
|
||||
@ -66,5 +67,5 @@ def preprocess_audio_clip(
|
||||
|
||||
"""
|
||||
config = config or PreprocessingConfig()
|
||||
wav = load_clip_audio(clip, config=config.audio)
|
||||
wav = load_clip_audio(clip, config=config.audio, audio_dir=audio_dir)
|
||||
return compute_spectrogram(wav, config=config.spectrogram)
|
||||
|
@ -30,15 +30,22 @@ class AudioConfig(BaseConfig):
|
||||
def load_file_audio(
|
||||
path: data.PathLike,
|
||||
config: Optional[AudioConfig] = None,
|
||||
audio_dir: Optional[data.PathLike] = None,
|
||||
dtype: DTypeLike = np.float32,
|
||||
) -> xr.DataArray:
|
||||
recording = data.Recording.from_file(path)
|
||||
return load_recording_audio(recording, config=config, dtype=dtype)
|
||||
return load_recording_audio(
|
||||
recording,
|
||||
config=config,
|
||||
dtype=dtype,
|
||||
audio_dir=audio_dir,
|
||||
)
|
||||
|
||||
|
||||
def load_recording_audio(
|
||||
recording: data.Recording,
|
||||
config: Optional[AudioConfig] = None,
|
||||
audio_dir: Optional[data.PathLike] = None,
|
||||
dtype: DTypeLike = np.float32,
|
||||
) -> xr.DataArray:
|
||||
clip = data.Clip(
|
||||
@ -46,17 +53,25 @@ def load_recording_audio(
|
||||
start_time=0,
|
||||
end_time=recording.duration,
|
||||
)
|
||||
return load_clip_audio(clip, config=config, dtype=dtype)
|
||||
return load_clip_audio(
|
||||
clip,
|
||||
config=config,
|
||||
dtype=dtype,
|
||||
audio_dir=audio_dir,
|
||||
)
|
||||
|
||||
|
||||
def load_clip_audio(
|
||||
clip: data.Clip,
|
||||
config: Optional[AudioConfig] = None,
|
||||
audio_dir: Optional[data.PathLike] = None,
|
||||
dtype: DTypeLike = np.float32,
|
||||
) -> xr.DataArray:
|
||||
config = config or AudioConfig()
|
||||
|
||||
wav = audio.load_clip(clip).sel(channel=0).astype(dtype)
|
||||
wav = (
|
||||
audio.load_clip(clip, audio_dir=audio_dir).sel(channel=0).astype(dtype)
|
||||
)
|
||||
|
||||
if config.duration is not None:
|
||||
wav = adjust_audio_duration(wav, duration=config.duration)
|
||||
|
@ -28,10 +28,6 @@ class TrainExample(NamedTuple):
|
||||
idx: torch.Tensor
|
||||
|
||||
|
||||
def get_files(directory: PathLike, extension: str = ".nc") -> Sequence[Path]:
|
||||
return list(Path(directory).glob(f"*{extension}"))
|
||||
|
||||
|
||||
class LabeledDataset(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
@ -92,3 +88,7 @@ class LabeledDataset(Dataset):
|
||||
return data.ClipAnnotation.model_validate_json(
|
||||
self.get_dataset(idx).attrs["clip_annotation"]
|
||||
)
|
||||
|
||||
|
||||
def get_files(directory: PathLike, extension: str = ".nc") -> Sequence[Path]:
|
||||
return list(Path(directory).glob(f"*{extension}"))
|
||||
|
@ -26,6 +26,8 @@ dependencies = [
|
||||
"onnx>=1.16.0",
|
||||
"lightning[extra]>=2.2.2",
|
||||
"tensorboard>=2.16.2",
|
||||
"omegaconf>=2.3.0",
|
||||
"pyyaml>=6.0.2",
|
||||
]
|
||||
requires-python = ">=3.9,<3.13"
|
||||
readme = "README.md"
|
||||
|
@ -5,7 +5,7 @@ from typing import List
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from batdetect2.compat.data import load_annotation_project
|
||||
from batdetect2.compat.data import load_annotation_project_from_dir
|
||||
from batdetect2.compat.params import get_training_preprocessing_config
|
||||
from batdetect2.train.preprocess import generate_train_example
|
||||
|
||||
@ -36,7 +36,7 @@ def test_can_generate_similar_training_inputs(
|
||||
size_mask = dataset["size_mask"]
|
||||
class_mask = dataset["class_mask"]
|
||||
|
||||
project = load_annotation_project(
|
||||
project = load_annotation_project_from_dir(
|
||||
example_anns_dir,
|
||||
audio_dir=example_audio_dir,
|
||||
)
|
||||
|
4
uv.lock
generated
4
uv.lock
generated
@ -198,9 +198,11 @@ dependencies = [
|
||||
{ name = "matplotlib" },
|
||||
{ name = "netcdf4" },
|
||||
{ name = "numpy" },
|
||||
{ name = "omegaconf" },
|
||||
{ name = "onnx" },
|
||||
{ name = "pandas" },
|
||||
{ name = "pytorch-lightning" },
|
||||
{ name = "pyyaml" },
|
||||
{ name = "scikit-learn" },
|
||||
{ name = "scipy" },
|
||||
{ name = "soundevent", extra = ["audio", "geometry", "plot"] },
|
||||
@ -231,9 +233,11 @@ requires-dist = [
|
||||
{ name = "matplotlib", specifier = ">=3.7.1" },
|
||||
{ name = "netcdf4", specifier = ">=1.6.5" },
|
||||
{ name = "numpy", specifier = ">=1.23.5" },
|
||||
{ name = "omegaconf", specifier = ">=2.3.0" },
|
||||
{ name = "onnx", specifier = ">=1.16.0" },
|
||||
{ name = "pandas", specifier = ">=1.5.3" },
|
||||
{ name = "pytorch-lightning", specifier = ">=2.2.2" },
|
||||
{ name = "pyyaml", specifier = ">=6.0.2" },
|
||||
{ name = "scikit-learn", specifier = ">=1.2.2" },
|
||||
{ name = "scipy", specifier = ">=1.10.1" },
|
||||
{ name = "soundevent", extras = ["audio", "geometry", "plot"], specifier = ">=2.3" },
|
||||
|
Loading…
Reference in New Issue
Block a user