Compare commits

..

3 Commits

Author SHA1 Message Date
mbsantiago
615c811bb4 Add detection_class_name to targets protocol 2025-09-09 20:30:20 +01:00
mbsantiago
41b18c3f0a Better order for checkpoints 2025-09-09 15:56:46 +01:00
mbsantiago
16a0fa7b75 Add targets to train cli 2025-09-09 15:45:00 +01:00
7 changed files with 45 additions and 28 deletions

View File

@ -7,6 +7,7 @@ from loguru import logger
from batdetect2.cli.base import cli
from batdetect2.data import load_dataset_from_config
from batdetect2.targets import load_target_config
from batdetect2.train import (
FullTrainingConfig,
load_full_training_config,
@ -20,6 +21,7 @@ __all__ = ["train_command"]
@click.argument("train_dataset", type=click.Path(exists=True))
@click.option("--val-dataset", type=click.Path(exists=True))
@click.option("--model-path", type=click.Path(exists=True))
@click.option("--targets", type=click.Path(exists=True))
@click.option("--ckpt-dir", type=click.Path(exists=True))
@click.option("--log-dir", type=click.Path(exists=True))
@click.option("--config", type=click.Path(exists=True))
@ -42,6 +44,7 @@ def train_command(
ckpt_dir: Optional[Path] = None,
log_dir: Optional[Path] = None,
config: Optional[Path] = None,
targets: Optional[Path] = None,
config_field: Optional[str] = None,
seed: Optional[int] = None,
train_workers: int = 0,
@ -62,12 +65,18 @@ def train_command(
logger.info("Initiating training process...")
logger.info("Loading training configuration...")
conf = (
load_full_training_config(config, field=config_field)
if config is not None
else FullTrainingConfig()
)
if targets is not None:
logger.info("Loading targets configuration...")
targets_config = load_target_config(targets)
conf = conf.model_copy(update=dict(targets=targets_config))
logger.info("Loading training dataset...")
train_annotations = load_dataset_from_config(train_dataset)
logger.debug(

View File

@ -301,7 +301,8 @@ def load_batdetect2_merged_annotated_dataset(
for ann in content:
try:
ann = FileAnnotation.model_validate(ann)
except ValueError:
except ValueError as err:
logger.warning(f"Invalid annotation file: {err}")
continue
if (
@ -309,14 +310,17 @@ def load_batdetect2_merged_annotated_dataset(
and dataset.filter.only_annotated
and not ann.annotated
):
logger.debug(f"Skipping incomplete annotation {ann.id}")
continue
if dataset.filter and dataset.filter.exclude_issues and ann.issues:
logger.debug(f"Skipping annotation with issues {ann.id}")
continue
try:
clip = file_annotation_to_clip(ann, audio_dir=audio_dir)
except FileNotFoundError:
except FileNotFoundError as err:
logger.warning(f"Error loading annotations: {err}")
continue
annotations.append(file_annotation_to_clip_annotation(ann, clip))

View File

@ -100,8 +100,11 @@ def extract_sound_events_df(
class_name = targets.encode_class(sound_event)
if class_name is None and exclude_generic:
continue
if class_name is None:
if exclude_generic:
continue
else:
class_name = targets.detection_class_name
start_time, low_freq, end_time, high_freq = compute_bounds(
sound_event.sound_event.geometry
@ -153,7 +156,7 @@ def compute_class_summary(
sound_events = extract_sound_events_df(
dataset,
targets,
exclude_generic=True,
exclude_generic=False,
exclude_non_target=True,
)
recordings = extract_recordings_df(dataset)

View File

@ -103,7 +103,7 @@ def convert_raw_prediction_to_sound_event_prediction(
tags = [
*get_generic_tags(
raw_prediction.detection_score,
generic_class_tags=targets.generic_class_tags,
generic_class_tags=targets.detection_class_tags,
),
*get_class_tags(
raw_prediction.class_scores,

View File

@ -140,16 +140,18 @@ class Targets(TargetProtocol):
"""
class_names: List[str]
generic_class_tags: List[data.Tag]
detection_class_tags: List[data.Tag]
dimension_names: List[str]
detection_class_name: str
def __init__(
self,
detection_class_name: str,
encode_fn: SoundEventEncoder,
decode_fn: SoundEventDecoder,
roi_mapper: ROITargetMapper,
class_names: list[str],
generic_class_tags: List[data.Tag],
detection_class_tags: List[data.Tag],
filter_fn: Optional[SoundEventCondition] = None,
roi_mapper_overrides: Optional[dict[str, ROITargetMapper]] = None,
):
@ -175,8 +177,9 @@ class Targets(TargetProtocol):
transform_fn : SoundEventTransformation, optional
Configured function to transform annotation tags. Defaults to None.
"""
self.detection_class_name = detection_class_name
self.class_names = class_names
self.generic_class_tags = generic_class_tags
self.detection_class_tags = detection_class_tags
self.dimension_names = roi_mapper.dimension_names
self._roi_mapper = roi_mapper
@ -381,7 +384,8 @@ def build_targets(config: Optional[TargetConfig] = None) -> Targets:
decode_fn=decode_fn,
class_names=class_names,
roi_mapper=roi_mapper,
generic_class_tags=generic_class_tags,
detection_class_name=config.detection_target.name,
detection_class_tags=generic_class_tags,
roi_mapper_overrides=roi_overrides,
)

View File

@ -152,25 +152,19 @@ def build_trainer_callbacks(
if checkpoint_dir is None:
checkpoint_dir = DEFAULT_CHECKPOINT_DIR
filename = "best-{epoch:02d}-{val_loss:.0f}"
if experiment_name is not None:
checkpoint_dir = checkpoint_dir / experiment_name
if run_name is not None:
filename = f"run_{run_name}_{filename}"
if experiment_name is not None:
filename = f"experiment_{experiment_name}_{filename}"
model_checkpoint = ModelCheckpoint(
dirpath=str(checkpoint_dir),
save_top_k=1,
filename=filename,
monitor="total_loss/val",
)
model_checkpoint.CHECKPOINT_EQUALS_CHAR = "_" # type: ignore
checkpoint_dir = checkpoint_dir / run_name
return [
model_checkpoint,
ModelCheckpoint(
dirpath=str(checkpoint_dir),
save_top_k=1,
filename="best-{epoch:02d}-{val_loss:.0f}",
monitor="total_loss/val",
),
ValidationMetrics(
metrics=[
DetectionAveragePrecision(),
@ -220,7 +214,8 @@ def build_trainer(
config=conf.evaluation,
preprocessor=build_preprocessor(conf.preprocess),
checkpoint_dir=checkpoint_dir,
experiment_name=train_logger.name,
experiment_name=experiment_name,
run_name=run_name,
),
)

View File

@ -94,8 +94,10 @@ class TargetProtocol(Protocol):
class_names: List[str]
"""Ordered list of unique names for the specific target classes."""
generic_class_tags: List[data.Tag]
"""List of tags representing the generic (unclassified) category."""
detection_class_tags: List[data.Tag]
"""List of tags representing the detection category (unclassified)."""
detection_class_name: str
dimension_names: List[str]
"""Names of the size dimensions (e.g., ['width', 'height'])."""