mirror of
https://github.com/macaodha/batdetect2.git
synced 2025-06-30 15:12:06 +02:00
Compare commits
7 Commits
4b4c3ecdf5
...
fdab0860fd
Author | SHA1 | Date | |
---|---|---|---|
![]() |
fdab0860fd | ||
![]() |
3b5623ddca | ||
![]() |
2913fa59a4 | ||
![]() |
9c8b8fb200 | ||
![]() |
bc86c94f8e | ||
![]() |
9106b9f408 | ||
![]() |
899f74efd5 |
196
batdetect2/cli/preprocess.py
Normal file
196
batdetect2/cli/preprocess.py
Normal file
@ -0,0 +1,196 @@
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import click
|
||||
from loguru import logger
|
||||
|
||||
from batdetect2.cli.base import cli
|
||||
from batdetect2.data import load_dataset_from_config
|
||||
from batdetect2.preprocess import build_preprocessor, load_preprocessing_config
|
||||
from batdetect2.targets import build_targets, load_target_config
|
||||
from batdetect2.train import load_label_config, preprocess_annotations
|
||||
from batdetect2.train.labels import build_clip_labeler
|
||||
|
||||
__all__ = ["preprocess"]
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.argument(
|
||||
"dataset_config",
|
||||
type=click.Path(exists=True),
|
||||
)
|
||||
@click.argument(
|
||||
"output",
|
||||
type=click.Path(),
|
||||
)
|
||||
@click.option(
|
||||
"--dataset-field",
|
||||
type=str,
|
||||
help=(
|
||||
"Specifies the key to access the dataset information within the "
|
||||
"dataset configuration file, if the information is nested inside a "
|
||||
"dictionary. If the dataset information is at the top level of the "
|
||||
"config file, you don't need to specify this."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--base-dir",
|
||||
type=click.Path(exists=True),
|
||||
help=(
|
||||
"The main directory where your audio recordings and annotation "
|
||||
"files are stored. This helps the program find your data, "
|
||||
"especially if the paths in your dataset configuration file "
|
||||
"are relative."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--preprocess-config",
|
||||
type=click.Path(exists=True),
|
||||
help=(
|
||||
"Path to the preprocessing configuration file. This file tells "
|
||||
"the program how to prepare your audio data before training, such "
|
||||
"as resampling or applying filters."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--preprocess-config-field",
|
||||
type=str,
|
||||
help=(
|
||||
"If the preprocessing settings are inside a nested dictionary "
|
||||
"within the preprocessing configuration file, specify the key "
|
||||
"here to access them. If the preprocessing settings are at the "
|
||||
"top level, you don't need to specify this."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--label-config",
|
||||
type=click.Path(exists=True),
|
||||
help=(
|
||||
"Path to the label generation configuration file. This file "
|
||||
"contains settings for how to create labels from your "
|
||||
"annotations, which the model uses to learn."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--label-config-field",
|
||||
type=str,
|
||||
help=(
|
||||
"If the label generation settings are inside a nested dictionary "
|
||||
"within the label configuration file, specify the key here. If "
|
||||
"the settings are at the top level, leave this blank."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--target-config",
|
||||
type=click.Path(exists=True),
|
||||
help=(
|
||||
"Path to the training target configuration file. This file "
|
||||
"specifies what sounds the model should learn to predict."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--target-config-field",
|
||||
type=str,
|
||||
help=(
|
||||
"If the target settings are inside a nested dictionary "
|
||||
"within the target configuration file, specify the key here. "
|
||||
"If the settings are at the top level, you don't need to specify this."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--force",
|
||||
is_flag=True,
|
||||
help=(
|
||||
"If a preprocessed file already exists, this option tells the "
|
||||
"program to overwrite it with the new preprocessed data. Use "
|
||||
"this if you want to re-do the preprocessing even if the files "
|
||||
"already exist."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
help=(
|
||||
"The maximum number of computer cores to use when processing "
|
||||
"your audio data. Using more cores can speed up the preprocessing, "
|
||||
"but don't use more than your computer has available. By default, "
|
||||
"the program will use all available cores."
|
||||
),
|
||||
)
|
||||
def preprocess(
|
||||
dataset_config: Path,
|
||||
output: Path,
|
||||
target_config: Optional[Path] = None,
|
||||
base_dir: Optional[Path] = None,
|
||||
preprocess_config: Optional[Path] = None,
|
||||
label_config: Optional[Path] = None,
|
||||
force: bool = False,
|
||||
num_workers: Optional[int] = None,
|
||||
target_config_field: Optional[str] = None,
|
||||
preprocess_config_field: Optional[str] = None,
|
||||
label_config_field: Optional[str] = None,
|
||||
dataset_field: Optional[str] = None,
|
||||
):
|
||||
logger.info("Starting preprocessing.")
|
||||
|
||||
output = Path(output)
|
||||
logger.info("Will save outputs to {output}", output=output)
|
||||
|
||||
base_dir = base_dir or Path.cwd()
|
||||
logger.debug("Current working directory: {base_dir}", base_dir=base_dir)
|
||||
|
||||
preprocess = (
|
||||
load_preprocessing_config(
|
||||
preprocess_config,
|
||||
field=preprocess_config_field,
|
||||
)
|
||||
if preprocess_config
|
||||
else None
|
||||
)
|
||||
|
||||
target = (
|
||||
load_target_config(
|
||||
target_config,
|
||||
field=target_config_field,
|
||||
)
|
||||
if target_config
|
||||
else None
|
||||
)
|
||||
|
||||
label = (
|
||||
load_label_config(
|
||||
label_config,
|
||||
field=label_config_field,
|
||||
)
|
||||
if label_config
|
||||
else None
|
||||
)
|
||||
|
||||
dataset = load_dataset_from_config(
|
||||
dataset_config,
|
||||
field=dataset_field,
|
||||
base_dir=base_dir,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Loaded {num_examples} annotated clips from the configured dataset",
|
||||
num_examples=len(dataset),
|
||||
)
|
||||
|
||||
targets = build_targets(config=target)
|
||||
preprocessor = build_preprocessor(config=preprocess)
|
||||
labeller = build_clip_labeler(targets, config=label)
|
||||
|
||||
if not output.exists():
|
||||
logger.debug("Creating directory {directory}", directory=output)
|
||||
output.mkdir(parents=True)
|
||||
|
||||
logger.info("Will start preprocessing")
|
||||
preprocess_annotations(
|
||||
dataset,
|
||||
output_dir=output,
|
||||
preprocessor=preprocessor,
|
||||
labeller=labeller,
|
||||
replace=force,
|
||||
max_workers=num_workers,
|
||||
)
|
@ -5,47 +5,48 @@ import click
|
||||
from loguru import logger
|
||||
|
||||
from batdetect2.cli.base import cli
|
||||
from batdetect2.data import load_dataset_from_config
|
||||
from batdetect2.evaluate.metrics import (
|
||||
ClassificationAccuracy,
|
||||
ClassificationMeanAveragePrecision,
|
||||
DetectionAveragePrecision,
|
||||
)
|
||||
from batdetect2.models import build_model
|
||||
from batdetect2.models.backbones import load_backbone_config
|
||||
from batdetect2.postprocess import build_postprocessor, load_postprocess_config
|
||||
from batdetect2.preprocess import build_preprocessor, load_preprocessing_config
|
||||
from batdetect2.targets import build_targets, load_target_config
|
||||
from batdetect2.train import load_label_config, preprocess_annotations
|
||||
from batdetect2.train.labels import build_clip_labeler
|
||||
from batdetect2.train import train
|
||||
from batdetect2.train.callbacks import ValidationMetrics
|
||||
from batdetect2.train.config import TrainingConfig, load_train_config
|
||||
from batdetect2.train.dataset import list_preprocessed_files
|
||||
|
||||
__all__ = ["train"]
|
||||
__all__ = [
|
||||
"train_command",
|
||||
]
|
||||
|
||||
DEFAULT_CONFIG_FILE = Path("config.yaml")
|
||||
|
||||
|
||||
@cli.group()
|
||||
def train(): ...
|
||||
|
||||
|
||||
@train.command()
|
||||
@click.argument(
|
||||
"dataset_config",
|
||||
@cli.command(name="train")
|
||||
@click.option(
|
||||
"--train-examples",
|
||||
type=click.Path(exists=True),
|
||||
required=True,
|
||||
)
|
||||
@click.option("--val-examples", type=click.Path(exists=True))
|
||||
@click.option(
|
||||
"--model-path",
|
||||
type=click.Path(exists=True),
|
||||
)
|
||||
@click.argument(
|
||||
"output",
|
||||
type=click.Path(),
|
||||
@click.option(
|
||||
"--train-config",
|
||||
type=click.Path(exists=True),
|
||||
default=DEFAULT_CONFIG_FILE,
|
||||
)
|
||||
@click.option(
|
||||
"--dataset-field",
|
||||
"--train-config-field",
|
||||
type=str,
|
||||
help=(
|
||||
"Specifies the key to access the dataset information within the "
|
||||
"dataset configuration file, if the information is nested inside a "
|
||||
"dictionary. If the dataset information is at the top level of the "
|
||||
"config file, you don't need to specify this."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--base-dir",
|
||||
type=click.Path(exists=True),
|
||||
help=(
|
||||
"The main directory where your audio recordings and annotation "
|
||||
"files are stored. This helps the program find your data, "
|
||||
"especially if the paths in your dataset configuration file "
|
||||
"are relative."
|
||||
),
|
||||
default="train",
|
||||
)
|
||||
@click.option(
|
||||
"--preprocess-config",
|
||||
@ -55,6 +56,7 @@ def train(): ...
|
||||
"the program how to prepare your audio data before training, such "
|
||||
"as resampling or applying filters."
|
||||
),
|
||||
default=DEFAULT_CONFIG_FILE,
|
||||
)
|
||||
@click.option(
|
||||
"--preprocess-config-field",
|
||||
@ -65,24 +67,7 @@ def train(): ...
|
||||
"here to access them. If the preprocessing settings are at the "
|
||||
"top level, you don't need to specify this."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--label-config",
|
||||
type=click.Path(exists=True),
|
||||
help=(
|
||||
"Path to the label generation configuration file. This file "
|
||||
"contains settings for how to create labels from your "
|
||||
"annotations, which the model uses to learn."
|
||||
),
|
||||
)
|
||||
@click.option(
|
||||
"--label-config-field",
|
||||
type=str,
|
||||
help=(
|
||||
"If the label generation settings are inside a nested dictionary "
|
||||
"within the label configuration file, specify the key here. If "
|
||||
"the settings are at the top level, leave this blank."
|
||||
),
|
||||
default="preprocess",
|
||||
)
|
||||
@click.option(
|
||||
"--target-config",
|
||||
@ -91,6 +76,7 @@ def train(): ...
|
||||
"Path to the training target configuration file. This file "
|
||||
"specifies what sounds the model should learn to predict."
|
||||
),
|
||||
default=DEFAULT_CONFIG_FILE,
|
||||
)
|
||||
@click.option(
|
||||
"--target-config-field",
|
||||
@ -100,101 +86,156 @@ def train(): ...
|
||||
"within the target configuration file, specify the key here. "
|
||||
"If the settings are at the top level, you don't need to specify this."
|
||||
),
|
||||
default="targets",
|
||||
)
|
||||
@click.option(
|
||||
"--force",
|
||||
is_flag=True,
|
||||
help=(
|
||||
"If a preprocessed file already exists, this option tells the "
|
||||
"program to overwrite it with the new preprocessed data. Use "
|
||||
"this if you want to re-do the preprocessing even if the files "
|
||||
"already exist."
|
||||
),
|
||||
"--postprocess-config",
|
||||
type=click.Path(exists=True),
|
||||
default=DEFAULT_CONFIG_FILE,
|
||||
)
|
||||
@click.option(
|
||||
"--num-workers",
|
||||
"--postprocess-config-field",
|
||||
type=str,
|
||||
default="postprocess",
|
||||
)
|
||||
@click.option(
|
||||
"--model-config",
|
||||
type=click.Path(exists=True),
|
||||
default=DEFAULT_CONFIG_FILE,
|
||||
)
|
||||
@click.option(
|
||||
"--model-config-field",
|
||||
type=str,
|
||||
default="model",
|
||||
)
|
||||
@click.option(
|
||||
"--train-workers",
|
||||
type=int,
|
||||
help=(
|
||||
"The maximum number of computer cores to use when processing "
|
||||
"your audio data. Using more cores can speed up the preprocessing, "
|
||||
"but don't use more than your computer has available. By default, "
|
||||
"the program will use all available cores."
|
||||
),
|
||||
default=0,
|
||||
)
|
||||
def preprocess(
|
||||
dataset_config: Path,
|
||||
output: Path,
|
||||
target_config: Optional[Path] = None,
|
||||
base_dir: Optional[Path] = None,
|
||||
preprocess_config: Optional[Path] = None,
|
||||
label_config: Optional[Path] = None,
|
||||
force: bool = False,
|
||||
num_workers: Optional[int] = None,
|
||||
target_config_field: Optional[str] = None,
|
||||
preprocess_config_field: Optional[str] = None,
|
||||
label_config_field: Optional[str] = None,
|
||||
dataset_field: Optional[str] = None,
|
||||
@click.option(
|
||||
"--val-workers",
|
||||
type=int,
|
||||
default=0,
|
||||
)
|
||||
def train_command(
|
||||
train_examples: Path,
|
||||
val_examples: Optional[Path] = None,
|
||||
model_path: Optional[Path] = None,
|
||||
train_config: Path = DEFAULT_CONFIG_FILE,
|
||||
train_config_field: str = "train",
|
||||
preprocess_config: Path = DEFAULT_CONFIG_FILE,
|
||||
preprocess_config_field: str = "preprocess",
|
||||
target_config: Path = DEFAULT_CONFIG_FILE,
|
||||
target_config_field: str = "targets",
|
||||
postprocess_config: Path = DEFAULT_CONFIG_FILE,
|
||||
postprocess_config_field: str = "postprocess",
|
||||
model_config: Path = DEFAULT_CONFIG_FILE,
|
||||
model_config_field: str = "model",
|
||||
train_workers: int = 0,
|
||||
val_workers: int = 0,
|
||||
):
|
||||
logger.info("Starting preprocessing.")
|
||||
logger.info("Starting training!")
|
||||
|
||||
output = Path(output)
|
||||
logger.info("Will save outputs to {output}", output=output)
|
||||
|
||||
base_dir = base_dir or Path.cwd()
|
||||
logger.debug("Current working directory: {base_dir}", base_dir=base_dir)
|
||||
|
||||
preprocess = (
|
||||
load_preprocessing_config(
|
||||
preprocess_config,
|
||||
field=preprocess_config_field,
|
||||
)
|
||||
if preprocess_config
|
||||
else None
|
||||
)
|
||||
|
||||
target = (
|
||||
load_target_config(
|
||||
target_config,
|
||||
try:
|
||||
target_config_loaded = load_target_config(
|
||||
path=target_config,
|
||||
field=target_config_field,
|
||||
)
|
||||
if target_config
|
||||
else None
|
||||
targets = build_targets(config=target_config_loaded)
|
||||
logger.debug(
|
||||
"Loaded targets info from config file {path}", path=target_config
|
||||
)
|
||||
except IOError:
|
||||
logger.debug(
|
||||
"Could not load target info from config file, using default"
|
||||
)
|
||||
targets = build_targets()
|
||||
|
||||
try:
|
||||
preprocess_config_loaded = load_preprocessing_config(
|
||||
path=preprocess_config,
|
||||
field=preprocess_config_field,
|
||||
)
|
||||
preprocessor = build_preprocessor(preprocess_config_loaded)
|
||||
logger.debug(
|
||||
"Loaded preprocessor from config file {path}", path=target_config
|
||||
)
|
||||
|
||||
label = (
|
||||
load_label_config(
|
||||
label_config,
|
||||
field=label_config_field,
|
||||
except IOError:
|
||||
logger.debug(
|
||||
"Could not load preprocessor from config file, using default"
|
||||
)
|
||||
if label_config
|
||||
else None
|
||||
preprocessor = build_preprocessor()
|
||||
|
||||
try:
|
||||
model_config_loaded = load_backbone_config(
|
||||
path=model_config, field=model_config_field
|
||||
)
|
||||
model = build_model(
|
||||
num_classes=len(targets.class_names),
|
||||
config=model_config_loaded,
|
||||
)
|
||||
except IOError:
|
||||
model = build_model(num_classes=len(targets.class_names))
|
||||
|
||||
try:
|
||||
postprocess_config_loaded = load_postprocess_config(
|
||||
path=postprocess_config,
|
||||
field=postprocess_config_field,
|
||||
)
|
||||
postprocessor = build_postprocessor(
|
||||
targets=targets,
|
||||
config=postprocess_config_loaded,
|
||||
)
|
||||
logger.debug(
|
||||
"Loaded postprocessor from file {path}",
|
||||
path=train_config,
|
||||
)
|
||||
except IOError:
|
||||
logger.debug(
|
||||
"Could not load postprocessor config from file. Using default"
|
||||
)
|
||||
postprocessor = build_postprocessor(targets=targets)
|
||||
|
||||
try:
|
||||
train_config_loaded = load_train_config(
|
||||
path=train_config, field=train_config_field
|
||||
)
|
||||
logger.debug(
|
||||
"Loaded training config from file {path}",
|
||||
path=train_config,
|
||||
)
|
||||
except IOError:
|
||||
train_config_loaded = TrainingConfig()
|
||||
logger.debug("Could not load training config from file. Using default")
|
||||
|
||||
train_files = list_preprocessed_files(train_examples)
|
||||
|
||||
val_files = (
|
||||
None if val_examples is None else list_preprocessed_files(val_examples)
|
||||
)
|
||||
|
||||
dataset = load_dataset_from_config(
|
||||
dataset_config,
|
||||
field=dataset_field,
|
||||
base_dir=base_dir,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Loaded {num_examples} annotated clips from the configured dataset",
|
||||
num_examples=len(dataset),
|
||||
)
|
||||
|
||||
targets = build_targets(config=target)
|
||||
preprocessor = build_preprocessor(config=preprocess)
|
||||
labeller = build_clip_labeler(targets, config=label)
|
||||
|
||||
if not output.exists():
|
||||
logger.debug("Creating directory {directory}", directory=output)
|
||||
output.mkdir(parents=True)
|
||||
|
||||
logger.info("Will start preprocessing")
|
||||
preprocess_annotations(
|
||||
dataset,
|
||||
output_dir=output,
|
||||
return train(
|
||||
detector=model,
|
||||
train_examples=train_files, # type: ignore
|
||||
val_examples=val_files, # type: ignore
|
||||
model_path=model_path,
|
||||
preprocessor=preprocessor,
|
||||
labeller=labeller,
|
||||
replace=force,
|
||||
max_workers=num_workers,
|
||||
postprocessor=postprocessor,
|
||||
targets=targets,
|
||||
config=train_config_loaded,
|
||||
callbacks=[
|
||||
ValidationMetrics(
|
||||
metrics=[
|
||||
DetectionAveragePrecision(),
|
||||
ClassificationMeanAveragePrecision(
|
||||
class_names=targets.class_names,
|
||||
),
|
||||
ClassificationAccuracy(class_names=targets.class_names),
|
||||
]
|
||||
)
|
||||
],
|
||||
train_workers=train_workers,
|
||||
val_workers=val_workers,
|
||||
)
|
||||
|
@ -88,7 +88,7 @@ def get_object_field(obj: dict, current_key: str) -> Any:
|
||||
KeyError: 'x'
|
||||
"""
|
||||
if "." not in current_key:
|
||||
return obj[current_key]
|
||||
return obj.get(current_key, {})
|
||||
|
||||
current_key, rest = current_key.split(".", 1)
|
||||
subobj = obj[current_key]
|
||||
|
@ -5,19 +5,14 @@ import uuid
|
||||
from pathlib import Path
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from pydantic import BaseModel, Field
|
||||
from soundevent import data
|
||||
from soundevent.geometry import compute_bounds
|
||||
from soundevent.types import ClassMapper
|
||||
|
||||
from batdetect2 import types
|
||||
from batdetect2.targets import get_term_from_key
|
||||
|
||||
PathLike = Union[Path, str, os.PathLike]
|
||||
|
||||
__all__ = [
|
||||
"convert_to_annotation_group",
|
||||
]
|
||||
__all__ = []
|
||||
|
||||
SPECIES_TAG_KEY = "species"
|
||||
ECHOLOCATION_EVENT = "Echolocation"
|
||||
@ -33,104 +28,6 @@ ClassFn = Callable[[data.Recording], int]
|
||||
IndividualFn = Callable[[data.SoundEventAnnotation], int]
|
||||
|
||||
|
||||
def get_recording_class_name(recording: data.Recording) -> str:
|
||||
"""Get the class name for a recording."""
|
||||
tag = data.find_tag(recording.tags, SPECIES_TAG_KEY)
|
||||
if tag is None:
|
||||
return UNKNOWN_CLASS
|
||||
return tag.value
|
||||
|
||||
|
||||
def get_annotation_notes(annotation: data.ClipAnnotation) -> str:
|
||||
"""Get the notes for a ClipAnnotation."""
|
||||
all_notes = [
|
||||
*annotation.notes,
|
||||
*annotation.clip.recording.notes,
|
||||
]
|
||||
messages = [note.message for note in all_notes if note.message is not None]
|
||||
return "\n".join(messages)
|
||||
|
||||
|
||||
def convert_to_annotation_group(
|
||||
annotation: data.ClipAnnotation,
|
||||
class_mapper: ClassMapper,
|
||||
event_fn: EventFn = lambda _: ECHOLOCATION_EVENT,
|
||||
class_fn: ClassFn = lambda _: 0,
|
||||
individual_fn: IndividualFn = lambda _: 0,
|
||||
) -> types.AudioLoaderAnnotationGroup:
|
||||
"""Convert a ClipAnnotation to an AudioLoaderAnnotationGroup."""
|
||||
recording = annotation.clip.recording
|
||||
|
||||
start_times = []
|
||||
end_times = []
|
||||
low_freqs = []
|
||||
high_freqs = []
|
||||
class_ids = []
|
||||
x_inds = []
|
||||
y_inds = []
|
||||
individual_ids = []
|
||||
annotations: List[types.Annotation] = []
|
||||
class_id_file = class_fn(recording)
|
||||
|
||||
for sound_event in annotation.sound_events:
|
||||
geometry = sound_event.sound_event.geometry
|
||||
|
||||
if geometry is None:
|
||||
continue
|
||||
|
||||
start_time, low_freq, end_time, high_freq = compute_bounds(geometry)
|
||||
class_id = class_mapper.transform(sound_event) or -1
|
||||
event = event_fn(sound_event) or ""
|
||||
individual_id = individual_fn(sound_event) or -1
|
||||
|
||||
start_times.append(start_time)
|
||||
end_times.append(end_time)
|
||||
low_freqs.append(low_freq)
|
||||
high_freqs.append(high_freq)
|
||||
class_ids.append(class_id)
|
||||
individual_ids.append(individual_id)
|
||||
|
||||
# NOTE: This will be computed later so we just put a placeholder
|
||||
# here for now.
|
||||
x_inds.append(0)
|
||||
y_inds.append(0)
|
||||
|
||||
annotations.append(
|
||||
{
|
||||
"start_time": start_time,
|
||||
"end_time": end_time,
|
||||
"low_freq": low_freq,
|
||||
"high_freq": high_freq,
|
||||
"class_prob": 1.0,
|
||||
"det_prob": 1.0,
|
||||
"individual": "0",
|
||||
"event": event,
|
||||
"class_id": class_id, # type: ignore
|
||||
}
|
||||
)
|
||||
|
||||
return {
|
||||
"id": str(recording.path),
|
||||
"duration": recording.duration,
|
||||
"issues": False,
|
||||
"file_path": str(recording.path),
|
||||
"time_exp": recording.time_expansion,
|
||||
"class_name": get_recording_class_name(recording),
|
||||
"notes": get_annotation_notes(annotation),
|
||||
"annotated": True,
|
||||
"start_times": np.array(start_times),
|
||||
"end_times": np.array(end_times),
|
||||
"low_freqs": np.array(low_freqs),
|
||||
"high_freqs": np.array(high_freqs),
|
||||
"class_ids": np.array(class_ids),
|
||||
"x_inds": np.array(x_inds),
|
||||
"y_inds": np.array(y_inds),
|
||||
"individual_ids": np.array(individual_ids),
|
||||
"annotation": annotations,
|
||||
"class_id_file": class_id_file,
|
||||
}
|
||||
|
||||
|
||||
class Annotation(BaseModel):
|
||||
"""Annotation class to hold batdetect annotations."""
|
||||
|
||||
@ -195,15 +92,15 @@ def annotation_to_sound_event(
|
||||
sound_event=sound_event,
|
||||
tags=[
|
||||
data.Tag(
|
||||
term=data.term_from_key(label_key),
|
||||
term=get_term_from_key(label_key),
|
||||
value=annotation.label,
|
||||
),
|
||||
data.Tag(
|
||||
term=data.term_from_key(event_key),
|
||||
term=get_term_from_key(event_key),
|
||||
value=annotation.event,
|
||||
),
|
||||
data.Tag(
|
||||
term=data.term_from_key(individual_key),
|
||||
term=get_term_from_key(individual_key),
|
||||
value=str(annotation.individual),
|
||||
),
|
||||
],
|
||||
@ -228,7 +125,7 @@ def file_annotation_to_clip(
|
||||
time_expansion=file_annotation.time_exp,
|
||||
tags=[
|
||||
data.Tag(
|
||||
term=data.term_from_key(label_key),
|
||||
term=get_term_from_key(label_key),
|
||||
value=file_annotation.label,
|
||||
)
|
||||
],
|
||||
@ -260,7 +157,7 @@ def file_annotation_to_clip_annotation(
|
||||
notes=notes,
|
||||
tags=[
|
||||
data.Tag(
|
||||
term=data.term_from_key(label_key), value=file_annotation.label
|
||||
term=get_term_from_key(label_key), value=file_annotation.label
|
||||
)
|
||||
],
|
||||
sound_events=[
|
||||
|
@ -1,9 +1,13 @@
|
||||
from batdetect2.evaluate.evaluate import (
|
||||
compute_error_auc,
|
||||
)
|
||||
from batdetect2.evaluate.match import (
|
||||
match_predictions_and_annotations,
|
||||
match_sound_events_and_raw_predictions,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"compute_error_auc",
|
||||
"match_predictions_and_annotations",
|
||||
"match_sound_events_and_raw_predictions",
|
||||
]
|
||||
|
@ -1,51 +1,6 @@
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
from sklearn.metrics import auc, roc_curve
|
||||
from soundevent import data
|
||||
from soundevent.evaluation import match_geometries
|
||||
|
||||
|
||||
def match_predictions_and_annotations(
|
||||
clip_annotation: data.ClipAnnotation,
|
||||
clip_prediction: data.ClipPrediction,
|
||||
) -> List[data.Match]:
|
||||
annotated_sound_events = [
|
||||
sound_event_annotation
|
||||
for sound_event_annotation in clip_annotation.sound_events
|
||||
if sound_event_annotation.sound_event.geometry is not None
|
||||
]
|
||||
|
||||
predicted_sound_events = [
|
||||
sound_event_prediction
|
||||
for sound_event_prediction in clip_prediction.sound_events
|
||||
if sound_event_prediction.sound_event.geometry is not None
|
||||
]
|
||||
|
||||
annotated_geometries: List[data.Geometry] = [
|
||||
sound_event.sound_event.geometry
|
||||
for sound_event in annotated_sound_events
|
||||
if sound_event.sound_event.geometry is not None
|
||||
]
|
||||
|
||||
predicted_geometries: List[data.Geometry] = [
|
||||
sound_event.sound_event.geometry
|
||||
for sound_event in predicted_sound_events
|
||||
if sound_event.sound_event.geometry is not None
|
||||
]
|
||||
|
||||
matches = []
|
||||
for id1, id2, affinity in match_geometries(
|
||||
annotated_geometries,
|
||||
predicted_geometries,
|
||||
):
|
||||
target = annotated_sound_events[id1] if id1 is not None else None
|
||||
source = predicted_sound_events[id2] if id2 is not None else None
|
||||
matches.append(
|
||||
data.Match(source=source, target=target, affinity=affinity)
|
||||
)
|
||||
|
||||
return matches
|
||||
|
||||
|
||||
def compute_error_auc(op_str, gt, pred, prob):
|
||||
|
111
batdetect2/evaluate/match.py
Normal file
111
batdetect2/evaluate/match.py
Normal file
@ -0,0 +1,111 @@
|
||||
from typing import List
|
||||
|
||||
from soundevent import data
|
||||
from soundevent.evaluation import match_geometries
|
||||
|
||||
from batdetect2.evaluate.types import Match
|
||||
from batdetect2.postprocess.types import RawPrediction
|
||||
from batdetect2.targets.types import TargetProtocol
|
||||
from batdetect2.utils.arrays import iterate_over_array
|
||||
|
||||
|
||||
def match_sound_events_and_raw_predictions(
|
||||
sound_events: List[data.SoundEventAnnotation],
|
||||
raw_predictions: List[RawPrediction],
|
||||
targets: TargetProtocol,
|
||||
) -> List[Match]:
|
||||
target_sound_events = [
|
||||
targets.transform(sound_event_annotation)
|
||||
for sound_event_annotation in sound_events
|
||||
if targets.filter(sound_event_annotation)
|
||||
and sound_event_annotation.sound_event.geometry is not None
|
||||
]
|
||||
|
||||
target_geometries: List[data.Geometry] = [ # type: ignore
|
||||
sound_event_annotation.sound_event.geometry
|
||||
for sound_event_annotation in target_sound_events
|
||||
]
|
||||
|
||||
predicted_geometries = [
|
||||
raw_prediction.geometry for raw_prediction in raw_predictions
|
||||
]
|
||||
|
||||
matches = []
|
||||
for id1, id2, affinity in match_geometries(
|
||||
target_geometries,
|
||||
predicted_geometries,
|
||||
):
|
||||
target = target_sound_events[id1] if id1 is not None else None
|
||||
prediction = raw_predictions[id2] if id2 is not None else None
|
||||
|
||||
gt_uuid = target.uuid if target is not None else None
|
||||
gt_det = target is not None
|
||||
gt_class = targets.encode(target) if target is not None else None
|
||||
|
||||
pred_score = float(prediction.detection_score) if prediction else 0
|
||||
|
||||
class_scores = (
|
||||
{
|
||||
str(class_name): float(score)
|
||||
for class_name, score in iterate_over_array(
|
||||
prediction.class_scores
|
||||
)
|
||||
}
|
||||
if prediction is not None
|
||||
else {}
|
||||
)
|
||||
|
||||
matches.append(
|
||||
Match(
|
||||
gt_uuid=gt_uuid,
|
||||
gt_det=gt_det,
|
||||
gt_class=gt_class,
|
||||
pred_score=pred_score,
|
||||
affinity=affinity,
|
||||
class_scores=class_scores,
|
||||
)
|
||||
)
|
||||
|
||||
return matches
|
||||
|
||||
|
||||
def match_predictions_and_annotations(
|
||||
clip_annotation: data.ClipAnnotation,
|
||||
clip_prediction: data.ClipPrediction,
|
||||
) -> List[data.Match]:
|
||||
annotated_sound_events = [
|
||||
sound_event_annotation
|
||||
for sound_event_annotation in clip_annotation.sound_events
|
||||
if sound_event_annotation.sound_event.geometry is not None
|
||||
]
|
||||
|
||||
predicted_sound_events = [
|
||||
sound_event_prediction
|
||||
for sound_event_prediction in clip_prediction.sound_events
|
||||
if sound_event_prediction.sound_event.geometry is not None
|
||||
]
|
||||
|
||||
annotated_geometries: List[data.Geometry] = [
|
||||
sound_event.sound_event.geometry
|
||||
for sound_event in annotated_sound_events
|
||||
if sound_event.sound_event.geometry is not None
|
||||
]
|
||||
|
||||
predicted_geometries: List[data.Geometry] = [
|
||||
sound_event.sound_event.geometry
|
||||
for sound_event in predicted_sound_events
|
||||
if sound_event.sound_event.geometry is not None
|
||||
]
|
||||
|
||||
matches = []
|
||||
for id1, id2, affinity in match_geometries(
|
||||
annotated_geometries,
|
||||
predicted_geometries,
|
||||
):
|
||||
target = annotated_sound_events[id1] if id1 is not None else None
|
||||
source = predicted_sound_events[id2] if id2 is not None else None
|
||||
matches.append(
|
||||
data.Match(source=source, target=target, affinity=affinity)
|
||||
)
|
||||
|
||||
return matches
|
97
batdetect2/evaluate/metrics.py
Normal file
97
batdetect2/evaluate/metrics.py
Normal file
@ -0,0 +1,97 @@
|
||||
from typing import Dict, List
|
||||
|
||||
import pandas as pd
|
||||
from sklearn import metrics
|
||||
from sklearn.preprocessing import label_binarize
|
||||
|
||||
from batdetect2.evaluate.types import Match, MetricsProtocol
|
||||
|
||||
__all__ = ["DetectionAveragePrecision"]
|
||||
|
||||
|
||||
class DetectionAveragePrecision(MetricsProtocol):
|
||||
def __call__(self, matches: List[Match]) -> Dict[str, float]:
|
||||
y_true, y_score = zip(
|
||||
*[(match.gt_det, match.pred_score) for match in matches]
|
||||
)
|
||||
score = float(metrics.average_precision_score(y_true, y_score))
|
||||
return {"detection_AP": score}
|
||||
|
||||
|
||||
class ClassificationMeanAveragePrecision(MetricsProtocol):
|
||||
def __init__(self, class_names: List[str], per_class: bool = True):
|
||||
self.class_names = class_names
|
||||
self.per_class = per_class
|
||||
|
||||
def __call__(self, matches: List[Match]) -> Dict[str, float]:
|
||||
y_true = label_binarize(
|
||||
[
|
||||
match.gt_class if match.gt_class is not None else "__NONE__"
|
||||
for match in matches
|
||||
],
|
||||
classes=self.class_names,
|
||||
)
|
||||
y_pred = pd.DataFrame(
|
||||
[
|
||||
{
|
||||
name: match.class_scores.get(name, 0)
|
||||
for name in self.class_names
|
||||
}
|
||||
for match in matches
|
||||
]
|
||||
).fillna(0)
|
||||
mAP = metrics.average_precision_score(y_true, y_pred[self.class_names])
|
||||
|
||||
ret = {
|
||||
"classification_mAP": float(mAP),
|
||||
}
|
||||
|
||||
if not self.per_class:
|
||||
return ret
|
||||
|
||||
for class_index, class_name in enumerate(self.class_names):
|
||||
y_true_class = y_true[:, class_index]
|
||||
y_pred_class = y_pred[class_name]
|
||||
class_ap = metrics.average_precision_score(
|
||||
y_true_class,
|
||||
y_pred_class,
|
||||
)
|
||||
ret[f"classification_AP/{class_name}"] = float(class_ap)
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
class ClassificationAccuracy(MetricsProtocol):
|
||||
def __init__(self, class_names: List[str]):
|
||||
self.class_names = class_names
|
||||
|
||||
def __call__(self, matches: List[Match]) -> Dict[str, float]:
|
||||
y_true = [
|
||||
match.gt_class if match.gt_class is not None else "__NONE__"
|
||||
for match in matches
|
||||
]
|
||||
|
||||
y_pred = pd.DataFrame(
|
||||
[
|
||||
{
|
||||
name: match.class_scores.get(name, 0)
|
||||
for name in self.class_names
|
||||
}
|
||||
for match in matches
|
||||
]
|
||||
).fillna(0)
|
||||
y_pred = y_pred.apply(
|
||||
lambda row: row.idxmax()
|
||||
if row.max() >= (1 - row.sum())
|
||||
else "__NONE__",
|
||||
axis=1,
|
||||
)
|
||||
|
||||
accuracy = metrics.balanced_accuracy_score(
|
||||
y_true,
|
||||
y_pred,
|
||||
)
|
||||
|
||||
return {
|
||||
"classification_acc": float(accuracy),
|
||||
}
|
22
batdetect2/evaluate/types.py
Normal file
22
batdetect2/evaluate/types.py
Normal file
@ -0,0 +1,22 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Protocol
|
||||
from uuid import UUID
|
||||
|
||||
__all__ = [
|
||||
"MetricsProtocol",
|
||||
"Match",
|
||||
]
|
||||
|
||||
|
||||
@dataclass
|
||||
class Match:
|
||||
gt_uuid: Optional[UUID]
|
||||
gt_det: bool
|
||||
gt_class: Optional[str]
|
||||
pred_score: float
|
||||
affinity: float
|
||||
class_scores: Dict[str, float]
|
||||
|
||||
|
||||
class MetricsProtocol(Protocol):
|
||||
def __call__(self, matches: List[Match]) -> Dict[str, float]: ...
|
@ -170,8 +170,8 @@ def load_postprocess_config(
|
||||
def build_postprocessor(
|
||||
targets: TargetProtocol,
|
||||
config: Optional[PostprocessConfig] = None,
|
||||
max_freq: int = MAX_FREQ,
|
||||
min_freq: int = MIN_FREQ,
|
||||
max_freq: float = MAX_FREQ,
|
||||
min_freq: float = MIN_FREQ,
|
||||
) -> PostprocessorProtocol:
|
||||
"""Factory function to build the standard postprocessor.
|
||||
|
||||
@ -234,9 +234,9 @@ class Postprocessor(PostprocessorProtocol):
|
||||
recovery.
|
||||
config : PostprocessConfig
|
||||
Configuration object holding parameters for NMS, thresholds, etc.
|
||||
min_freq : int
|
||||
min_freq : float
|
||||
Minimum frequency (Hz) assumed for the model output's frequency axis.
|
||||
max_freq : int
|
||||
max_freq : float
|
||||
Maximum frequency (Hz) assumed for the model output's frequency axis.
|
||||
"""
|
||||
|
||||
@ -246,8 +246,8 @@ class Postprocessor(PostprocessorProtocol):
|
||||
self,
|
||||
targets: TargetProtocol,
|
||||
config: PostprocessConfig,
|
||||
min_freq: int = MIN_FREQ,
|
||||
max_freq: int = MAX_FREQ,
|
||||
min_freq: float = MIN_FREQ,
|
||||
max_freq: float = MAX_FREQ,
|
||||
):
|
||||
"""Initialize the Postprocessor.
|
||||
|
||||
|
@ -32,10 +32,10 @@ from typing import List, Optional
|
||||
import numpy as np
|
||||
import xarray as xr
|
||||
from soundevent import data
|
||||
from soundevent.geometry import compute_bounds
|
||||
|
||||
from batdetect2.postprocess.types import GeometryBuilder, RawPrediction
|
||||
from batdetect2.targets.classes import SoundEventDecoder
|
||||
from batdetect2.utils.arrays import iterate_over_array
|
||||
|
||||
__all__ = [
|
||||
"convert_xr_dataset_to_raw_prediction",
|
||||
@ -97,18 +97,14 @@ def convert_xr_dataset_to_raw_prediction(
|
||||
det_info = detection_dataset.sel(detection=det_num)
|
||||
|
||||
geom = geometry_builder(
|
||||
(det_info.time, det_info.freq),
|
||||
(det_info.time, det_info.frequency),
|
||||
det_info.dimensions,
|
||||
)
|
||||
|
||||
start_time, low_freq, end_time, high_freq = compute_bounds(geom)
|
||||
detections.append(
|
||||
RawPrediction(
|
||||
detection_score=det_info.score,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
low_freq=low_freq,
|
||||
high_freq=high_freq,
|
||||
detection_score=det_info.scores,
|
||||
geometry=geom,
|
||||
class_scores=det_info.classes,
|
||||
features=det_info.features,
|
||||
)
|
||||
@ -244,14 +240,7 @@ def convert_raw_prediction_to_sound_event_prediction(
|
||||
"""
|
||||
sound_event = data.SoundEvent(
|
||||
recording=recording,
|
||||
geometry=data.BoundingBox(
|
||||
coordinates=[
|
||||
raw_prediction.start_time,
|
||||
raw_prediction.low_freq,
|
||||
raw_prediction.end_time,
|
||||
raw_prediction.high_freq,
|
||||
]
|
||||
),
|
||||
geometry=raw_prediction.geometry,
|
||||
features=get_prediction_features(raw_prediction.features),
|
||||
)
|
||||
|
||||
@ -333,7 +322,7 @@ def get_prediction_features(features: xr.DataArray) -> List[data.Feature]:
|
||||
),
|
||||
value=value,
|
||||
)
|
||||
for feat_name, value in _iterate_over_array(features)
|
||||
for feat_name, value in iterate_over_array(features)
|
||||
]
|
||||
|
||||
|
||||
@ -394,13 +383,6 @@ def get_class_tags(
|
||||
return tags
|
||||
|
||||
|
||||
def _iterate_over_array(array: xr.DataArray):
|
||||
dim_name = array.dims[0]
|
||||
coords = array.coords[dim_name]
|
||||
for value, coord in zip(array.values, coords.values):
|
||||
yield coord, float(value)
|
||||
|
||||
|
||||
def _iterate_sorted(array: xr.DataArray):
|
||||
dim_name = array.dims[0]
|
||||
coords = array.coords[dim_name].values
|
||||
|
@ -47,14 +47,9 @@ class RawPrediction(NamedTuple):
|
||||
|
||||
Attributes
|
||||
----------
|
||||
start_time : float
|
||||
Start time of the recovered bounding box in seconds.
|
||||
end_time : float
|
||||
End time of the recovered bounding box in seconds.
|
||||
low_freq : float
|
||||
Lowest frequency of the recovered bounding box in Hz.
|
||||
high_freq : float
|
||||
Highest frequency of the recovered bounding box in Hz.
|
||||
geometry: data.Geometry
|
||||
The recovered estimated geometry of the detected sound event.
|
||||
Usually a bounding box.
|
||||
detection_score : float
|
||||
The confidence score associated with this detection, typically from
|
||||
the detection heatmap peak.
|
||||
@ -67,10 +62,7 @@ class RawPrediction(NamedTuple):
|
||||
detection location. Indexed by a 'feature' coordinate.
|
||||
"""
|
||||
|
||||
start_time: float
|
||||
end_time: float
|
||||
low_freq: float
|
||||
high_freq: float
|
||||
geometry: data.Geometry
|
||||
detection_score: float
|
||||
class_scores: xr.DataArray
|
||||
features: xr.DataArray
|
||||
|
@ -24,6 +24,7 @@ object is via the `build_targets` or `load_targets` functions.
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
from pydantic import Field
|
||||
from soundevent import data
|
||||
|
||||
from batdetect2.configs import BaseConfig, load_config
|
||||
@ -157,7 +158,9 @@ class TargetConfig(BaseConfig):
|
||||
|
||||
filtering: Optional[FilterConfig] = None
|
||||
transforms: Optional[TransformConfig] = None
|
||||
classes: ClassesConfig
|
||||
classes: ClassesConfig = Field(
|
||||
default_factory=lambda: DEFAULT_CLASSES_CONFIG
|
||||
)
|
||||
roi: Optional[ROIConfig] = None
|
||||
|
||||
|
||||
@ -438,25 +441,7 @@ class Targets(TargetProtocol):
|
||||
return self._roi_mapper.recover_roi(pos, dims)
|
||||
|
||||
|
||||
DEFAULT_TARGET_CONFIG: TargetConfig = TargetConfig(
|
||||
filtering=FilterConfig(
|
||||
rules=[
|
||||
FilterRule(
|
||||
match_type="all",
|
||||
tags=[TagInfo(key="event", value="Echolocation")],
|
||||
),
|
||||
FilterRule(
|
||||
match_type="exclude",
|
||||
tags=[
|
||||
TagInfo(key="event", value="Feeding"),
|
||||
TagInfo(key="event", value="Unknown"),
|
||||
TagInfo(key="event", value="Not Bat"),
|
||||
],
|
||||
),
|
||||
]
|
||||
),
|
||||
classes=ClassesConfig(
|
||||
classes=[
|
||||
DEFAULT_CLASSES = [
|
||||
TargetClass(
|
||||
tags=[TagInfo(value="Myotis mystacinus")],
|
||||
name="myomys",
|
||||
@ -525,9 +510,33 @@ DEFAULT_TARGET_CONFIG: TargetConfig = TargetConfig(
|
||||
tags=[TagInfo(value="Plecotus austriacus")],
|
||||
name="pleaus",
|
||||
),
|
||||
],
|
||||
]
|
||||
|
||||
|
||||
DEFAULT_CLASSES_CONFIG: ClassesConfig = ClassesConfig(
|
||||
classes=DEFAULT_CLASSES,
|
||||
generic_class=[TagInfo(value="Bat")],
|
||||
)
|
||||
|
||||
|
||||
DEFAULT_TARGET_CONFIG: TargetConfig = TargetConfig(
|
||||
filtering=FilterConfig(
|
||||
rules=[
|
||||
FilterRule(
|
||||
match_type="all",
|
||||
tags=[TagInfo(key="event", value="Echolocation")],
|
||||
),
|
||||
FilterRule(
|
||||
match_type="exclude",
|
||||
tags=[
|
||||
TagInfo(key="event", value="Feeding"),
|
||||
TagInfo(key="event", value="Unknown"),
|
||||
TagInfo(key="event", value="Not Bat"),
|
||||
],
|
||||
),
|
||||
]
|
||||
),
|
||||
classes=DEFAULT_CLASSES_CONFIG,
|
||||
)
|
||||
|
||||
|
||||
|
@ -106,7 +106,7 @@ def contains_tags(
|
||||
False otherwise.
|
||||
"""
|
||||
sound_event_tags = set(sound_event_annotation.tags)
|
||||
return tags < sound_event_tags
|
||||
return tags <= sound_event_tags
|
||||
|
||||
|
||||
def does_not_have_tags(
|
||||
|
@ -20,14 +20,27 @@ scaling factors) is managed by the `ROIConfig`. This module separates the
|
||||
handled in `batdetect2.targets.classes`.
|
||||
"""
|
||||
|
||||
from typing import List, Optional, Protocol, Tuple
|
||||
from typing import List, Literal, Optional, Protocol, Tuple
|
||||
|
||||
import numpy as np
|
||||
from soundevent import data, geometry
|
||||
from soundevent.geometry.operations import Positions
|
||||
from soundevent import data
|
||||
|
||||
from batdetect2.configs import BaseConfig, load_config
|
||||
|
||||
Positions = Literal[
|
||||
"bottom-left",
|
||||
"bottom-right",
|
||||
"top-left",
|
||||
"top-right",
|
||||
"center-left",
|
||||
"center-right",
|
||||
"top-center",
|
||||
"bottom-center",
|
||||
"center",
|
||||
"centroid",
|
||||
"point_on_surface",
|
||||
]
|
||||
|
||||
__all__ = [
|
||||
"ROITargetMapper",
|
||||
"ROIConfig",
|
||||
@ -242,6 +255,8 @@ class BBoxEncoder(ROITargetMapper):
|
||||
Tuple[float, float]
|
||||
Reference position (time, frequency).
|
||||
"""
|
||||
from soundevent import geometry
|
||||
|
||||
return geometry.get_geometry_point(geom, position=self.position)
|
||||
|
||||
def get_roi_size(self, geom: data.Geometry) -> np.ndarray:
|
||||
@ -260,6 +275,8 @@ class BBoxEncoder(ROITargetMapper):
|
||||
np.ndarray
|
||||
A 1D NumPy array: `[scaled_width, scaled_height]`.
|
||||
"""
|
||||
from soundevent import geometry
|
||||
|
||||
start_time, low_freq, end_time, high_freq = geometry.compute_bounds(
|
||||
geom
|
||||
)
|
||||
@ -308,8 +325,8 @@ class BBoxEncoder(ROITargetMapper):
|
||||
width, height = dims
|
||||
return _build_bounding_box(
|
||||
pos,
|
||||
duration=width / self.time_scale,
|
||||
bandwidth=height / self.frequency_scale,
|
||||
duration=float(width) / self.time_scale,
|
||||
bandwidth=float(height) / self.frequency_scale,
|
||||
position=self.position,
|
||||
)
|
||||
|
||||
@ -421,14 +438,16 @@ def _build_bounding_box(
|
||||
ValueError
|
||||
If `position` is not a recognized value or format.
|
||||
"""
|
||||
time, freq = pos
|
||||
time, freq = map(float, pos)
|
||||
duration = max(0, duration)
|
||||
bandwidth = max(0, bandwidth)
|
||||
if position in ["center", "centroid", "point_on_surface"]:
|
||||
return data.BoundingBox(
|
||||
coordinates=[
|
||||
time - duration / 2,
|
||||
freq - bandwidth / 2,
|
||||
time + duration / 2,
|
||||
freq + bandwidth / 2,
|
||||
max(time - duration / 2, 0),
|
||||
max(freq - bandwidth / 2, 0),
|
||||
max(time + duration / 2, 0),
|
||||
max(freq + bandwidth / 2, 0),
|
||||
]
|
||||
)
|
||||
|
||||
@ -454,9 +473,9 @@ def _build_bounding_box(
|
||||
|
||||
return data.BoundingBox(
|
||||
coordinates=[
|
||||
start_time,
|
||||
low_freq,
|
||||
start_time + duration,
|
||||
low_freq + bandwidth,
|
||||
max(0, start_time),
|
||||
max(0, low_freq),
|
||||
max(0, start_time + duration),
|
||||
max(0, low_freq + bandwidth),
|
||||
]
|
||||
)
|
||||
|
@ -14,28 +14,47 @@ from batdetect2.train.augmentations import (
|
||||
warp_spectrogram,
|
||||
)
|
||||
from batdetect2.train.clips import build_clipper, select_subclip
|
||||
from batdetect2.train.config import TrainingConfig, load_train_config
|
||||
from batdetect2.train.config import (
|
||||
TrainerConfig,
|
||||
TrainingConfig,
|
||||
load_train_config,
|
||||
)
|
||||
from batdetect2.train.dataset import (
|
||||
LabeledDataset,
|
||||
RandomExampleSource,
|
||||
TrainExample,
|
||||
list_preprocessed_files,
|
||||
)
|
||||
from batdetect2.train.labels import load_label_config
|
||||
from batdetect2.train.losses import LossFunction, build_loss
|
||||
from batdetect2.train.labels import build_clip_labeler, load_label_config
|
||||
from batdetect2.train.losses import (
|
||||
ClassificationLossConfig,
|
||||
DetectionLossConfig,
|
||||
LossConfig,
|
||||
LossFunction,
|
||||
SizeLossConfig,
|
||||
build_loss,
|
||||
)
|
||||
from batdetect2.train.preprocess import (
|
||||
generate_train_example,
|
||||
preprocess_annotations,
|
||||
)
|
||||
from batdetect2.train.train import TrainerConfig, load_trainer_config, train
|
||||
from batdetect2.train.train import (
|
||||
build_train_dataset,
|
||||
build_val_dataset,
|
||||
train,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"AugmentationsConfig",
|
||||
"ClassificationLossConfig",
|
||||
"DetectionLossConfig",
|
||||
"EchoAugmentationConfig",
|
||||
"FrequencyMaskAugmentationConfig",
|
||||
"LabeledDataset",
|
||||
"LossConfig",
|
||||
"LossFunction",
|
||||
"RandomExampleSource",
|
||||
"SizeLossConfig",
|
||||
"TimeMaskAugmentationConfig",
|
||||
"TrainExample",
|
||||
"TrainerConfig",
|
||||
@ -44,13 +63,15 @@ __all__ = [
|
||||
"WarpAugmentationConfig",
|
||||
"add_echo",
|
||||
"build_augmentations",
|
||||
"build_clip_labeler",
|
||||
"build_clipper",
|
||||
"build_loss",
|
||||
"build_train_dataset",
|
||||
"build_val_dataset",
|
||||
"generate_train_example",
|
||||
"list_preprocessed_files",
|
||||
"load_label_config",
|
||||
"load_train_config",
|
||||
"load_trainer_config",
|
||||
"mask_frequency",
|
||||
"mask_time",
|
||||
"mix_examples",
|
||||
@ -58,5 +79,6 @@ __all__ = [
|
||||
"scale_volume",
|
||||
"select_subclip",
|
||||
"train",
|
||||
"train",
|
||||
"warp_spectrogram",
|
||||
]
|
||||
|
@ -1,30 +1,52 @@
|
||||
from typing import List
|
||||
|
||||
from lightning import LightningModule, Trainer
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
from soundevent import data
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from batdetect2.postprocess import PostprocessorProtocol
|
||||
from batdetect2.evaluate.match import match_sound_events_and_raw_predictions
|
||||
from batdetect2.evaluate.types import Match, MetricsProtocol
|
||||
from batdetect2.targets.types import TargetProtocol
|
||||
from batdetect2.train.dataset import LabeledDataset, TrainExample
|
||||
from batdetect2.types import ModelOutput
|
||||
from batdetect2.train.lightning import TrainingModule
|
||||
from batdetect2.train.types import ModelOutput
|
||||
|
||||
|
||||
class ValidationMetrics(Callback):
|
||||
def __init__(self, postprocessor: PostprocessorProtocol):
|
||||
def __init__(self, metrics: List[MetricsProtocol]):
|
||||
super().__init__()
|
||||
self.postprocessor = postprocessor
|
||||
self.predictions = []
|
||||
|
||||
if len(metrics) == 0:
|
||||
raise ValueError("At least one metric needs to be provided")
|
||||
|
||||
self.matches: List[Match] = []
|
||||
self.metrics = metrics
|
||||
|
||||
def on_validation_epoch_end(
|
||||
self,
|
||||
trainer: Trainer,
|
||||
pl_module: LightningModule,
|
||||
) -> None:
|
||||
metrics = {}
|
||||
for metric in self.metrics:
|
||||
metrics.update(metric(self.matches).items())
|
||||
|
||||
pl_module.log_dict(metrics)
|
||||
return super().on_validation_epoch_end(trainer, pl_module)
|
||||
|
||||
def on_validation_epoch_start(
|
||||
self,
|
||||
trainer: Trainer,
|
||||
pl_module: LightningModule,
|
||||
) -> None:
|
||||
self.predictions = []
|
||||
self.matches = []
|
||||
return super().on_validation_epoch_start(trainer, pl_module)
|
||||
|
||||
def on_validation_batch_end( # type: ignore
|
||||
self,
|
||||
trainer: Trainer,
|
||||
pl_module: LightningModule,
|
||||
pl_module: TrainingModule,
|
||||
outputs: ModelOutput,
|
||||
batch: TrainExample,
|
||||
batch_idx: int,
|
||||
@ -32,24 +54,73 @@ class ValidationMetrics(Callback):
|
||||
) -> None:
|
||||
dataloaders = trainer.val_dataloaders
|
||||
assert isinstance(dataloaders, DataLoader)
|
||||
|
||||
dataset = dataloaders.dataset
|
||||
assert isinstance(dataset, LabeledDataset)
|
||||
clip_annotation = dataset.get_clip_annotation(batch_idx)
|
||||
|
||||
# clip_prediction = postprocess_model_outputs(
|
||||
# outputs,
|
||||
# clips=[clip_annotation.clip],
|
||||
# classes=self.class_names,
|
||||
# decoder=self.decoder,
|
||||
# config=self.config.postprocessing,
|
||||
# )[0]
|
||||
#
|
||||
# matches = match_predictions_and_annotations(
|
||||
# clip_annotation,
|
||||
# clip_prediction,
|
||||
# )
|
||||
#
|
||||
# self.validation_predictions.extend(matches)
|
||||
# return super().on_validation_batch_end(
|
||||
# trainer, pl_module, outputs, batch, batch_idx, dataloader_idx
|
||||
# )
|
||||
clip_annotations = [
|
||||
_get_subclip(
|
||||
dataset.get_clip_annotation(example_id),
|
||||
start_time=start_time.item(),
|
||||
end_time=end_time.item(),
|
||||
targets=pl_module.targets,
|
||||
)
|
||||
for example_id, start_time, end_time in zip(
|
||||
batch.idx,
|
||||
batch.start_time,
|
||||
batch.end_time,
|
||||
)
|
||||
]
|
||||
|
||||
clips = [clip_annotation.clip for clip_annotation in clip_annotations]
|
||||
|
||||
raw_predictions = pl_module.postprocessor.get_raw_predictions(
|
||||
outputs,
|
||||
clips,
|
||||
)
|
||||
|
||||
for clip_annotation, clip_predictions in zip(
|
||||
clip_annotations, raw_predictions
|
||||
):
|
||||
self.matches.extend(
|
||||
match_sound_events_and_raw_predictions(
|
||||
sound_events=clip_annotation.sound_events,
|
||||
raw_predictions=clip_predictions,
|
||||
targets=pl_module.targets,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def _is_in_subclip(
|
||||
sound_event_annotation: data.SoundEventAnnotation,
|
||||
targets: TargetProtocol,
|
||||
start_time: float,
|
||||
end_time: float,
|
||||
) -> bool:
|
||||
time, _ = targets.get_position(sound_event_annotation)
|
||||
return start_time <= time <= end_time
|
||||
|
||||
|
||||
def _get_subclip(
|
||||
clip_annotation: data.ClipAnnotation,
|
||||
start_time: float,
|
||||
end_time: float,
|
||||
targets: TargetProtocol,
|
||||
) -> data.ClipAnnotation:
|
||||
return data.ClipAnnotation(
|
||||
clip=data.Clip(
|
||||
recording=clip_annotation.clip.recording,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
),
|
||||
sound_events=[
|
||||
sound_event_annotation
|
||||
for sound_event_annotation in clip_annotation.sound_events
|
||||
if _is_in_subclip(
|
||||
sound_event_annotation,
|
||||
targets,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
)
|
||||
],
|
||||
)
|
||||
|
@ -69,12 +69,15 @@ class Clipper(ClipperProtocol):
|
||||
)
|
||||
|
||||
|
||||
def build_clipper(config: Optional[ClipingConfig] = None) -> ClipperProtocol:
|
||||
def build_clipper(
|
||||
config: Optional[ClipingConfig] = None,
|
||||
random: Optional[bool] = None,
|
||||
) -> ClipperProtocol:
|
||||
config = config or ClipingConfig()
|
||||
return Clipper(
|
||||
duration=config.duration,
|
||||
max_empty=config.max_empty,
|
||||
random=config.random,
|
||||
random=config.random if random else False,
|
||||
)
|
||||
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
from typing import Optional
|
||||
from typing import Optional, Union
|
||||
|
||||
from pydantic import Field
|
||||
from soundevent.data import PathLike
|
||||
from soundevent import data
|
||||
|
||||
from batdetect2.configs import BaseConfig, load_config
|
||||
from batdetect2.train.augmentations import (
|
||||
@ -23,8 +23,29 @@ class OptimizerConfig(BaseConfig):
|
||||
t_max: int = 100
|
||||
|
||||
|
||||
class TrainerConfig(BaseConfig):
|
||||
accelerator: str = "auto"
|
||||
accumulate_grad_batches: int = 1
|
||||
deterministic: bool = True
|
||||
check_val_every_n_epoch: int = 1
|
||||
devices: Union[str, int] = "auto"
|
||||
enable_checkpointing: bool = True
|
||||
gradient_clip_val: Optional[float] = None
|
||||
limit_train_batches: Optional[Union[int, float]] = None
|
||||
limit_test_batches: Optional[Union[int, float]] = None
|
||||
limit_val_batches: Optional[Union[int, float]] = None
|
||||
log_every_n_steps: Optional[int] = None
|
||||
max_epochs: Optional[int] = 200
|
||||
min_epochs: Optional[int] = None
|
||||
max_steps: Optional[int] = None
|
||||
min_steps: Optional[int] = None
|
||||
max_time: Optional[str] = None
|
||||
precision: Optional[str] = None
|
||||
val_check_interval: Optional[Union[int, float]] = None
|
||||
|
||||
|
||||
class TrainingConfig(BaseConfig):
|
||||
batch_size: int = 32
|
||||
batch_size: int = 8
|
||||
|
||||
loss: LossConfig = Field(default_factory=LossConfig)
|
||||
|
||||
@ -36,9 +57,11 @@ class TrainingConfig(BaseConfig):
|
||||
|
||||
cliping: ClipingConfig = Field(default_factory=ClipingConfig)
|
||||
|
||||
trainer: TrainerConfig = Field(default_factory=TrainerConfig)
|
||||
|
||||
|
||||
def load_train_config(
|
||||
path: PathLike,
|
||||
path: data.PathLike,
|
||||
field: Optional[str] = None,
|
||||
) -> TrainingConfig:
|
||||
return load_config(path, schema=TrainingConfig, field=field)
|
||||
|
@ -42,8 +42,8 @@ class LabeledDataset(Dataset):
|
||||
class_heatmap=self.to_tensor(dataset["class"]),
|
||||
size_heatmap=self.to_tensor(dataset["size"]),
|
||||
idx=torch.tensor(idx),
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
start_time=torch.tensor(start_time),
|
||||
end_time=torch.tensor(end_time),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -81,17 +81,24 @@ class LabeledDataset(Dataset):
|
||||
array: xr.DataArray,
|
||||
dtype=np.float32,
|
||||
) -> torch.Tensor:
|
||||
return torch.tensor(array.values.astype(dtype))
|
||||
return torch.nan_to_num(
|
||||
torch.tensor(array.values.astype(dtype)),
|
||||
nan=0,
|
||||
)
|
||||
|
||||
|
||||
def list_preprocessed_files(
|
||||
directory: data.PathLike, extension: str = ".nc"
|
||||
) -> Sequence[Path]:
|
||||
) -> List[Path]:
|
||||
return list(Path(directory).glob(f"*{extension}"))
|
||||
|
||||
|
||||
class RandomExampleSource:
|
||||
def __init__(self, filenames: List[str], clipper: ClipperProtocol):
|
||||
def __init__(
|
||||
self,
|
||||
filenames: List[data.PathLike],
|
||||
clipper: ClipperProtocol,
|
||||
):
|
||||
self.filenames = filenames
|
||||
self.clipper = clipper
|
||||
|
||||
|
@ -23,13 +23,13 @@ parameter specific to this module is the Gaussian smoothing sigma (`sigma`)
|
||||
defined in `LabelConfig`.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from collections.abc import Iterable
|
||||
from functools import partial
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import xarray as xr
|
||||
from loguru import logger
|
||||
from scipy.ndimage import gaussian_filter
|
||||
from soundevent import arrays, data
|
||||
|
||||
@ -52,8 +52,6 @@ __all__ = [
|
||||
SIZE_DIMENSION = "dimension"
|
||||
"""Dimension name for the size heatmap."""
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LabelConfig(BaseConfig):
|
||||
"""Configuration parameters for heatmap generation.
|
||||
@ -137,12 +135,27 @@ def generate_clip_label(
|
||||
A NamedTuple containing the generated 'detection', 'classes', and 'size'
|
||||
heatmaps for this clip.
|
||||
"""
|
||||
logger.debug(
|
||||
"Will generate heatmaps for clip annotation {uuid} with {num} annotated sound events",
|
||||
uuid=clip_annotation.uuid,
|
||||
num=len(clip_annotation.sound_events)
|
||||
)
|
||||
|
||||
sound_events = []
|
||||
|
||||
for sound_event_annotation in clip_annotation.sound_events:
|
||||
if not targets.filter(sound_event_annotation):
|
||||
logger.debug(
|
||||
"Sound event {sound_event} did not pass the filter. Tags: {tags}",
|
||||
sound_event=sound_event_annotation,
|
||||
tags=sound_event_annotation.tags,
|
||||
)
|
||||
continue
|
||||
|
||||
sound_events.append(targets.transform(sound_event_annotation))
|
||||
|
||||
return generate_heatmaps(
|
||||
(
|
||||
targets.transform(sound_event_annotation)
|
||||
for sound_event_annotation in clip_annotation.sound_events
|
||||
if targets.filter(sound_event_annotation)
|
||||
),
|
||||
sound_events,
|
||||
spec=spec,
|
||||
targets=targets,
|
||||
target_sigma=config.sigma,
|
||||
|
@ -40,7 +40,9 @@ class TrainingModule(L.LightningModule):
|
||||
self.learning_rate = learning_rate
|
||||
self.t_max = t_max
|
||||
|
||||
self.save_hyperparameters()
|
||||
# NOTE: Ignore detector and loss from hyperparameter saving
|
||||
# as they are nn.Module and should be saved regardless.
|
||||
self.save_hyperparameters(ignore=["detector", "loss"])
|
||||
|
||||
def forward(self, spec: torch.Tensor) -> ModelOutput:
|
||||
return self.detector(spec)
|
||||
@ -49,21 +51,25 @@ class TrainingModule(L.LightningModule):
|
||||
outputs = self.forward(batch.spec)
|
||||
losses = self.loss(outputs, batch)
|
||||
|
||||
self.log("train/loss/total", losses.total, prog_bar=True, logger=True)
|
||||
self.log("train/loss/detection", losses.total, logger=True)
|
||||
self.log("train/loss/size", losses.total, logger=True)
|
||||
self.log("train/loss/classification", losses.total, logger=True)
|
||||
self.log("total_loss/train", losses.total, prog_bar=True, logger=True)
|
||||
self.log("detection_loss/train", losses.total, logger=True)
|
||||
self.log("size_loss/train", losses.total, logger=True)
|
||||
self.log("classification_loss/train", losses.total, logger=True)
|
||||
|
||||
return losses.total
|
||||
|
||||
def validation_step(self, batch: TrainExample, batch_idx: int) -> None:
|
||||
def validation_step( # type: ignore
|
||||
self, batch: TrainExample, batch_idx: int
|
||||
) -> ModelOutput:
|
||||
outputs = self.forward(batch.spec)
|
||||
losses = self.loss(outputs, batch)
|
||||
|
||||
self.log("val/loss/total", losses.total, prog_bar=True, logger=True)
|
||||
self.log("val/loss/detection", losses.total, logger=True)
|
||||
self.log("val/loss/size", losses.total, logger=True)
|
||||
self.log("val/loss/classification", losses.total, logger=True)
|
||||
self.log("total_loss/val", losses.total, prog_bar=True, logger=True)
|
||||
self.log("detection_loss/val", losses.total, logger=True)
|
||||
self.log("size_loss/val", losses.total, logger=True)
|
||||
self.log("classification_loss/val", losses.total, logger=True)
|
||||
|
||||
return outputs
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = Adam(self.parameters(), lr=self.learning_rate)
|
||||
|
@ -1,68 +1,147 @@
|
||||
from typing import Optional, Union
|
||||
from typing import List, Optional
|
||||
|
||||
from lightning import LightningModule
|
||||
from lightning.pytorch import Trainer
|
||||
from soundevent.data import PathLike
|
||||
from lightning import Trainer
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
from soundevent import data
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from batdetect2.configs import BaseConfig, load_config
|
||||
from batdetect2.train.dataset import LabeledDataset
|
||||
from batdetect2.models.types import DetectionModel
|
||||
from batdetect2.postprocess import build_postprocessor
|
||||
from batdetect2.postprocess.types import PostprocessorProtocol
|
||||
from batdetect2.preprocess import build_preprocessor
|
||||
from batdetect2.preprocess.types import PreprocessorProtocol
|
||||
from batdetect2.targets import build_targets
|
||||
from batdetect2.targets.types import TargetProtocol
|
||||
from batdetect2.train.augmentations import (
|
||||
build_augmentations,
|
||||
)
|
||||
from batdetect2.train.clips import build_clipper
|
||||
from batdetect2.train.config import TrainingConfig
|
||||
from batdetect2.train.dataset import LabeledDataset, RandomExampleSource
|
||||
from batdetect2.train.lightning import TrainingModule
|
||||
from batdetect2.train.losses import build_loss
|
||||
|
||||
__all__ = [
|
||||
"train",
|
||||
"TrainerConfig",
|
||||
"load_trainer_config",
|
||||
"build_val_dataset",
|
||||
"build_train_dataset",
|
||||
]
|
||||
|
||||
|
||||
class TrainerConfig(BaseConfig):
|
||||
accelerator: str = "auto"
|
||||
accumulate_grad_batches: int = 1
|
||||
deterministic: bool = True
|
||||
check_val_every_n_epoch: int = 1
|
||||
devices: Union[str, int] = "auto"
|
||||
enable_checkpointing: bool = True
|
||||
gradient_clip_val: Optional[float] = None
|
||||
limit_train_batches: Optional[Union[int, float]] = None
|
||||
limit_test_batches: Optional[Union[int, float]] = None
|
||||
limit_val_batches: Optional[Union[int, float]] = None
|
||||
log_every_n_steps: Optional[int] = None
|
||||
max_epochs: Optional[int] = None
|
||||
min_epochs: Optional[int] = 100
|
||||
max_steps: Optional[int] = None
|
||||
min_steps: Optional[int] = None
|
||||
max_time: Optional[str] = None
|
||||
precision: Optional[str] = None
|
||||
reload_dataloaders_every_n_epochs: Optional[int] = None
|
||||
val_check_interval: Optional[Union[int, float]] = None
|
||||
|
||||
|
||||
def load_trainer_config(path: PathLike, field: Optional[str] = None):
|
||||
return load_config(path, schema=TrainerConfig, field=field)
|
||||
|
||||
|
||||
def train(
|
||||
module: LightningModule,
|
||||
train_dataset: LabeledDataset,
|
||||
trainer_config: Optional[TrainerConfig] = None,
|
||||
dev_run: bool = False,
|
||||
overfit_batches: bool = False,
|
||||
profiler: Optional[str] = None,
|
||||
):
|
||||
trainer_config = trainer_config or TrainerConfig()
|
||||
detector: DetectionModel,
|
||||
train_examples: List[data.PathLike],
|
||||
targets: Optional[TargetProtocol] = None,
|
||||
preprocessor: Optional[PreprocessorProtocol] = None,
|
||||
postprocessor: Optional[PostprocessorProtocol] = None,
|
||||
val_examples: Optional[List[data.PathLike]] = None,
|
||||
config: Optional[TrainingConfig] = None,
|
||||
callbacks: Optional[List[Callback]] = None,
|
||||
model_path: Optional[data.PathLike] = None,
|
||||
train_workers: int = 0,
|
||||
val_workers: int = 0,
|
||||
**trainer_kwargs,
|
||||
) -> None:
|
||||
config = config or TrainingConfig()
|
||||
if model_path is None:
|
||||
if preprocessor is None:
|
||||
preprocessor = build_preprocessor()
|
||||
|
||||
if targets is None:
|
||||
targets = build_targets()
|
||||
|
||||
if postprocessor is None:
|
||||
postprocessor = build_postprocessor(
|
||||
targets,
|
||||
min_freq=preprocessor.min_freq,
|
||||
max_freq=preprocessor.max_freq,
|
||||
)
|
||||
|
||||
loss = build_loss(config.loss)
|
||||
|
||||
module = TrainingModule(
|
||||
detector=detector,
|
||||
loss=loss,
|
||||
targets=targets,
|
||||
preprocessor=preprocessor,
|
||||
postprocessor=postprocessor,
|
||||
learning_rate=config.optimizer.learning_rate,
|
||||
t_max=config.optimizer.t_max,
|
||||
)
|
||||
else:
|
||||
module = TrainingModule.load_from_checkpoint(model_path) # type: ignore
|
||||
|
||||
train_dataset = build_train_dataset(
|
||||
train_examples,
|
||||
preprocessor=module.preprocessor,
|
||||
config=config,
|
||||
)
|
||||
|
||||
trainer = Trainer(
|
||||
**trainer_config.model_dump(
|
||||
exclude_unset=True,
|
||||
exclude_none=True,
|
||||
),
|
||||
fast_dev_run=dev_run,
|
||||
overfit_batches=overfit_batches,
|
||||
profiler=profiler,
|
||||
**config.trainer.model_dump(exclude_none=True),
|
||||
callbacks=callbacks,
|
||||
**trainer_kwargs,
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=module.config.train.batch_size,
|
||||
batch_size=config.batch_size,
|
||||
shuffle=True,
|
||||
num_workers=7,
|
||||
num_workers=train_workers,
|
||||
)
|
||||
trainer.fit(module, train_dataloaders=train_loader)
|
||||
|
||||
val_dataloader = None
|
||||
if val_examples:
|
||||
val_dataset = build_val_dataset(
|
||||
val_examples,
|
||||
config=config,
|
||||
)
|
||||
val_dataloader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=config.batch_size,
|
||||
shuffle=False,
|
||||
num_workers=val_workers,
|
||||
)
|
||||
|
||||
trainer.fit(
|
||||
module,
|
||||
train_dataloaders=train_dataloader,
|
||||
val_dataloaders=val_dataloader,
|
||||
)
|
||||
|
||||
|
||||
def build_train_dataset(
|
||||
examples: List[data.PathLike],
|
||||
preprocessor: PreprocessorProtocol,
|
||||
config: Optional[TrainingConfig] = None,
|
||||
) -> LabeledDataset:
|
||||
config = config or TrainingConfig()
|
||||
|
||||
clipper = build_clipper(config.cliping, random=True)
|
||||
|
||||
random_example_source = RandomExampleSource(
|
||||
examples,
|
||||
clipper=clipper,
|
||||
)
|
||||
|
||||
augmentations = build_augmentations(
|
||||
preprocessor,
|
||||
config=config.augmentations,
|
||||
example_source=random_example_source,
|
||||
)
|
||||
|
||||
return LabeledDataset(
|
||||
examples,
|
||||
clipper=clipper,
|
||||
augmentation=augmentations,
|
||||
)
|
||||
|
||||
|
||||
def build_val_dataset(
|
||||
examples: List[data.PathLike],
|
||||
config: Optional[TrainingConfig] = None,
|
||||
train: bool = True,
|
||||
) -> LabeledDataset:
|
||||
config = config or TrainingConfig()
|
||||
clipper = build_clipper(config.cliping, random=train)
|
||||
return LabeledDataset(examples, clipper=clipper)
|
||||
|
@ -57,8 +57,8 @@ class TrainExample(NamedTuple):
|
||||
class_heatmap: torch.Tensor
|
||||
size_heatmap: torch.Tensor
|
||||
idx: torch.Tensor
|
||||
start_time: float
|
||||
end_time: float
|
||||
start_time: torch.Tensor
|
||||
end_time: torch.Tensor
|
||||
|
||||
|
||||
class Losses(NamedTuple):
|
||||
|
@ -1,4 +1,5 @@
|
||||
import numpy as np
|
||||
import xarray as xr
|
||||
|
||||
|
||||
def extend_width(
|
||||
@ -59,3 +60,10 @@ def adjust_width(
|
||||
for index in range(dims)
|
||||
]
|
||||
return array[tuple(slices)]
|
||||
|
||||
|
||||
def iterate_over_array(array: xr.DataArray):
|
||||
dim_name = array.dims[0]
|
||||
coords = array.coords[dim_name]
|
||||
for value, coord in zip(array.values, coords.values):
|
||||
yield coord, float(value)
|
||||
|
@ -7,6 +7,8 @@ import pytest
|
||||
import soundfile as sf
|
||||
from soundevent import data, terms
|
||||
|
||||
from batdetect2.data import DatasetConfig, load_dataset
|
||||
from batdetect2.data.annotations.batdetect2 import BatDetect2FilesAnnotations
|
||||
from batdetect2.preprocess import build_preprocessor
|
||||
from batdetect2.preprocess.types import PreprocessorProtocol
|
||||
from batdetect2.targets import (
|
||||
@ -383,3 +385,27 @@ def sample_labeller(
|
||||
sample_targets: TargetProtocol,
|
||||
) -> ClipLabeller:
|
||||
return build_clip_labeler(sample_targets)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def example_dataset(example_data_dir: Path) -> DatasetConfig:
|
||||
return DatasetConfig(
|
||||
name="test dataset",
|
||||
description="test dataset",
|
||||
sources=[
|
||||
BatDetect2FilesAnnotations(
|
||||
name="example annotations",
|
||||
audio_dir=example_data_dir / "audio",
|
||||
annotations_dir=example_data_dir / "anns",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def example_annotations(
|
||||
example_dataset: DatasetConfig,
|
||||
) -> List[data.ClipAnnotation]:
|
||||
annotations = load_dataset(example_dataset)
|
||||
assert len(annotations) == 3
|
||||
return annotations
|
||||
|
@ -254,11 +254,11 @@ class TestLoadBatDetect2Files:
|
||||
assert clip_ann.clip.recording.duration == 5.0
|
||||
assert len(clip_ann.sound_events) == 1
|
||||
assert clip_ann.notes[0].message == "Standard notes."
|
||||
clip_tag = data.find_tag(clip_ann.tags, "class")
|
||||
clip_tag = data.find_tag(clip_ann.tags, "Class")
|
||||
assert clip_tag is not None
|
||||
assert clip_tag.value == "Myotis"
|
||||
|
||||
recording_tag = data.find_tag(clip_ann.clip.recording.tags, "class")
|
||||
recording_tag = data.find_tag(clip_ann.clip.recording.tags, "Class")
|
||||
assert recording_tag is not None
|
||||
assert recording_tag.value == "Myotis"
|
||||
|
||||
@ -271,15 +271,15 @@ class TestLoadBatDetect2Files:
|
||||
40000,
|
||||
]
|
||||
|
||||
se_class_tag = data.find_tag(se_ann.tags, "class")
|
||||
se_class_tag = data.find_tag(se_ann.tags, "Class")
|
||||
assert se_class_tag is not None
|
||||
assert se_class_tag.value == "Myotis"
|
||||
|
||||
se_event_tag = data.find_tag(se_ann.tags, "event")
|
||||
se_event_tag = data.find_tag(se_ann.tags, "Call Type")
|
||||
assert se_event_tag is not None
|
||||
assert se_event_tag.value == "Echolocation"
|
||||
|
||||
se_individual_tag = data.find_tag(se_ann.tags, "individual")
|
||||
se_individual_tag = data.find_tag(se_ann.tags, "Individual")
|
||||
assert se_individual_tag is not None
|
||||
assert se_individual_tag.value == "0"
|
||||
|
||||
@ -439,7 +439,7 @@ class TestLoadBatDetect2Merged:
|
||||
assert clip_ann.clip.recording.duration == 5.0
|
||||
assert len(clip_ann.sound_events) == 1
|
||||
|
||||
clip_class_tag = data.find_tag(clip_ann.tags, "class")
|
||||
clip_class_tag = data.find_tag(clip_ann.tags, "Class")
|
||||
assert clip_class_tag is not None
|
||||
assert clip_class_tag.value == "Myotis"
|
||||
|
||||
|
@ -98,7 +98,7 @@ def sample_detection_dataset() -> xr.Dataset:
|
||||
expected_freqs = np.array([300, 200])
|
||||
detection_coords = {
|
||||
"time": ("detection", expected_times),
|
||||
"freq": ("detection", expected_freqs),
|
||||
"frequency": ("detection", expected_freqs),
|
||||
}
|
||||
|
||||
scores_data = np.array([0.9, 0.8], dtype=np.float64)
|
||||
@ -106,7 +106,7 @@ def sample_detection_dataset() -> xr.Dataset:
|
||||
scores_data,
|
||||
coords=detection_coords,
|
||||
dims=["detection"],
|
||||
name="scores",
|
||||
name="score",
|
||||
)
|
||||
|
||||
dimensions_data = np.array([[7.0, 16.0], [3.0, 12.0]], dtype=np.float32)
|
||||
@ -183,7 +183,7 @@ def empty_detection_dataset() -> xr.Dataset:
|
||||
)
|
||||
return xr.Dataset(
|
||||
{
|
||||
"scores": scores,
|
||||
"score": scores,
|
||||
"dimensions": dimensions,
|
||||
"classes": classes,
|
||||
"features": features,
|
||||
@ -206,10 +206,14 @@ def sample_raw_predictions() -> List[RawPrediction]:
|
||||
)
|
||||
pred1 = RawPrediction(
|
||||
detection_score=0.9,
|
||||
start_time=20 - 7 / 2,
|
||||
end_time=20 + 7 / 2,
|
||||
low_freq=300 - 16 / 2,
|
||||
high_freq=300 + 16 / 2,
|
||||
geometry=data.BoundingBox(
|
||||
coordinates=[
|
||||
20 - 7 / 2,
|
||||
300 - 16 / 2,
|
||||
20 + 7 / 2,
|
||||
300 + 16 / 2,
|
||||
]
|
||||
),
|
||||
class_scores=pred1_classes,
|
||||
features=pred1_features,
|
||||
)
|
||||
@ -224,10 +228,14 @@ def sample_raw_predictions() -> List[RawPrediction]:
|
||||
)
|
||||
pred2 = RawPrediction(
|
||||
detection_score=0.8,
|
||||
start_time=10 - 3 / 2,
|
||||
end_time=10 + 3 / 2,
|
||||
low_freq=200 - 12 / 2,
|
||||
high_freq=200 + 12 / 2,
|
||||
geometry=data.BoundingBox(
|
||||
coordinates=[
|
||||
10 - 3 / 2,
|
||||
200 - 12 / 2,
|
||||
10 + 3 / 2,
|
||||
200 + 12 / 2,
|
||||
]
|
||||
),
|
||||
class_scores=pred2_classes,
|
||||
features=pred2_features,
|
||||
)
|
||||
@ -242,10 +250,14 @@ def sample_raw_predictions() -> List[RawPrediction]:
|
||||
)
|
||||
pred3 = RawPrediction(
|
||||
detection_score=0.15,
|
||||
start_time=5.0,
|
||||
end_time=6.0,
|
||||
low_freq=50.0,
|
||||
high_freq=60.0,
|
||||
geometry=data.BoundingBox(
|
||||
coordinates=[
|
||||
5.0,
|
||||
50.0,
|
||||
6.0,
|
||||
60.0,
|
||||
]
|
||||
),
|
||||
class_scores=pred3_classes,
|
||||
features=pred3_features,
|
||||
)
|
||||
@ -267,10 +279,12 @@ def test_convert_xr_dataset_basic(
|
||||
assert isinstance(pred1, RawPrediction)
|
||||
assert pred1.detection_score == 0.9
|
||||
|
||||
assert pred1.start_time == 20 - 7 / 2
|
||||
assert pred1.end_time == 20 + 7 / 2
|
||||
assert pred1.low_freq == 300 - 16 / 2
|
||||
assert pred1.high_freq == 300 + 16 / 2
|
||||
assert pred1.geometry.coordinates == [
|
||||
20 - 7 / 2,
|
||||
300 - 16 / 2,
|
||||
20 + 7 / 2,
|
||||
300 + 16 / 2,
|
||||
]
|
||||
xr.testing.assert_allclose(
|
||||
pred1.class_scores,
|
||||
sample_detection_dataset["classes"].sel(detection=0),
|
||||
@ -283,10 +297,12 @@ def test_convert_xr_dataset_basic(
|
||||
assert isinstance(pred2, RawPrediction)
|
||||
assert pred2.detection_score == 0.8
|
||||
|
||||
assert pred2.start_time == 10 - 3 / 2
|
||||
assert pred2.end_time == 10 + 3 / 2
|
||||
assert pred2.low_freq == 200 - 12 / 2
|
||||
assert pred2.high_freq == 200 + 12 / 2
|
||||
assert pred2.geometry.coordinates == [
|
||||
10 - 3 / 2,
|
||||
200 - 12 / 2,
|
||||
10 + 3 / 2,
|
||||
200 + 12 / 2,
|
||||
]
|
||||
xr.testing.assert_allclose(
|
||||
pred2.class_scores,
|
||||
sample_detection_dataset["classes"].sel(detection=1),
|
||||
@ -331,15 +347,7 @@ def test_convert_raw_to_sound_event_basic(
|
||||
assert isinstance(se, data.SoundEvent)
|
||||
assert se.recording == sample_recording
|
||||
assert isinstance(se.geometry, data.BoundingBox)
|
||||
np.testing.assert_allclose(
|
||||
se.geometry.coordinates,
|
||||
[
|
||||
raw_pred.start_time,
|
||||
raw_pred.low_freq,
|
||||
raw_pred.end_time,
|
||||
raw_pred.high_freq,
|
||||
],
|
||||
)
|
||||
assert se.geometry == raw_pred.geometry
|
||||
assert len(se.features) == len(raw_pred.features)
|
||||
|
||||
feat_dict = {f.term.name: f.value for f in se.features}
|
||||
|
@ -1,6 +1,6 @@
|
||||
import math
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
from typing import Callable, Union
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
@ -307,7 +307,7 @@ def test_remove_spectral_mean_constant(constant_wave_xr: xr.DataArray):
|
||||
def test_resize_spectrogram(
|
||||
sample_spec: xr.DataArray,
|
||||
height: int,
|
||||
resize_factor: float | None,
|
||||
resize_factor: Union[float, None],
|
||||
expected_freq_size: int,
|
||||
expected_time_factor: float,
|
||||
):
|
||||
|
@ -4,6 +4,7 @@ from typing import Callable, List, Set
|
||||
import pytest
|
||||
from soundevent import data
|
||||
|
||||
from batdetect2.targets import build_targets
|
||||
from batdetect2.targets.filtering import (
|
||||
FilterConfig,
|
||||
FilterRule,
|
||||
@ -176,3 +177,34 @@ rules:
|
||||
filter_result = load_filter_from_config(test_config_path)
|
||||
annotation = create_annotation(["tag1", "tag3"])
|
||||
assert filter_result(annotation) is False
|
||||
|
||||
|
||||
def test_default_filtering_over_example_dataset(
|
||||
example_annotations: List[data.ClipAnnotation],
|
||||
):
|
||||
targets = build_targets()
|
||||
|
||||
clip1 = example_annotations[0]
|
||||
clip2 = example_annotations[1]
|
||||
clip3 = example_annotations[2]
|
||||
|
||||
assert (
|
||||
sum(
|
||||
[targets.filter(sound_event) for sound_event in clip1.sound_events]
|
||||
)
|
||||
== 9
|
||||
)
|
||||
|
||||
assert (
|
||||
sum(
|
||||
[targets.filter(sound_event) for sound_event in clip2.sound_events]
|
||||
)
|
||||
== 15
|
||||
)
|
||||
|
||||
assert (
|
||||
sum(
|
||||
[targets.filter(sound_event) for sound_event in clip3.sound_events]
|
||||
)
|
||||
== 20
|
||||
)
|
||||
|
@ -9,8 +9,8 @@ from batdetect2.preprocess.types import PreprocessorProtocol
|
||||
from batdetect2.train.augmentations import (
|
||||
add_echo,
|
||||
mix_examples,
|
||||
select_subclip,
|
||||
)
|
||||
from batdetect2.train.clips import select_subclip
|
||||
from batdetect2.train.preprocess import generate_train_example
|
||||
from batdetect2.train.types import ClipLabeller
|
||||
|
||||
@ -121,7 +121,7 @@ def test_selected_random_subclip_has_the_correct_width(
|
||||
preprocessor=sample_preprocessor,
|
||||
labeller=sample_labeller,
|
||||
)
|
||||
subclip = select_subclip(original, width=100)
|
||||
subclip = select_subclip(original, start=0, span=100)
|
||||
|
||||
assert subclip["spectrogram"].shape[1] == 100
|
||||
|
||||
@ -142,7 +142,7 @@ def test_add_echo_after_subclip(
|
||||
|
||||
assert original.sizes["time"] > 512
|
||||
|
||||
subclip = select_subclip(original, width=512)
|
||||
subclip = select_subclip(original, start=0, span=512)
|
||||
with_echo = add_echo(subclip, preprocessor=sample_preprocessor)
|
||||
|
||||
assert with_echo.sizes["time"] == 512
|
||||
|
Loading…
Reference in New Issue
Block a user