Compare commits

...

3 Commits

Author SHA1 Message Date
mbsantiago
115084fd2b Updat lightning version 2025-09-09 15:31:40 +01:00
mbsantiago
951dc59718 Add seed option to train 2025-09-09 13:23:56 +01:00
mbsantiago
3376be06a4 Add experiment name 2025-09-09 09:02:25 +01:00
6 changed files with 174 additions and 60 deletions

View File

@ -109,7 +109,7 @@ train:
sigma: 3
trainer:
max_epochs: 40
max_epochs: 5
dataloaders:
train:
@ -136,9 +136,9 @@ train:
weight: 0.1
logger:
logger_type: csv
# save_dir: outputs/log/
# name: logs
name: mlflow
tracking_uri: http://10.20.20.211:9000
log_model: true
augmentations:
enabled: true

View File

@ -23,7 +23,7 @@ dependencies = [
"tqdm>=4.66.2",
"cf-xarray>=0.9.0",
"onnx>=1.16.0",
"lightning[extra]>=2.2.2",
"lightning[extra]==2.5.0",
"tensorboard>=2.16.2",
"omegaconf>=2.3.0",
"pyyaml>=6.0.2",

View File

@ -26,6 +26,9 @@ __all__ = ["train_command"]
@click.option("--config-field", type=str)
@click.option("--train-workers", type=int)
@click.option("--val-workers", type=int)
@click.option("--experiment-name", type=str)
@click.option("--run-name", type=str)
@click.option("--seed", type=int)
@click.option(
"-v",
"--verbose",
@ -40,8 +43,11 @@ def train_command(
log_dir: Optional[Path] = None,
config: Optional[Path] = None,
config_field: Optional[str] = None,
seed: Optional[int] = None,
train_workers: int = 0,
val_workers: int = 0,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
verbose: int = 0,
):
logger.remove()
@ -87,6 +93,9 @@ def train_command(
model_path=model_path,
train_workers=train_workers,
val_workers=val_workers,
experiment_name=experiment_name,
log_dir=log_dir,
checkpoint_dir=ckpt_dir,
seed=seed,
run_name=run_name,
)

View File

@ -68,7 +68,7 @@ class ValidationMetrics(Callback):
n_examples=4,
):
plotter(
f"images/{class_name}_examples",
f"examples/{class_name}",
fig,
pl_module.global_step,
)

View File

@ -1,5 +1,16 @@
import io
from typing import Annotated, Any, Literal, Optional, Union
from pathlib import Path
from typing import (
Annotated,
Any,
Dict,
Generic,
Literal,
Optional,
Protocol,
TypeVar,
Union,
)
import numpy as np
from lightning.pytorch.loggers import Logger, MLFlowLogger, TensorBoardLogger
@ -9,39 +20,34 @@ from soundevent import data
from batdetect2.configs import BaseConfig
DEFAULT_LOGS_DIR: str = "outputs"
DEFAULT_LOGS_DIR: Path = Path("outputs") / "logs"
class DVCLiveConfig(BaseConfig):
logger_type: Literal["dvclive"] = "dvclive"
dir: str = DEFAULT_LOGS_DIR
class BaseLoggerConfig(BaseConfig):
log_dir: Path = DEFAULT_LOGS_DIR
experiment_name: Optional[str] = None
run_name: Optional[str] = None
class DVCLiveConfig(BaseLoggerConfig):
name: Literal["dvclive"] = "dvclive"
prefix: str = ""
log_model: Union[bool, Literal["all"]] = False
monitor_system: bool = False
class CSVLoggerConfig(BaseConfig):
logger_type: Literal["csv"] = "csv"
save_dir: str = DEFAULT_LOGS_DIR
name: Optional[str] = "logs"
version: Optional[str] = None
class CSVLoggerConfig(BaseLoggerConfig):
name: Literal["csv"] = "csv"
flush_logs_every_n_steps: int = 100
class TensorBoardLoggerConfig(BaseConfig):
logger_type: Literal["tensorboard"] = "tensorboard"
save_dir: str = DEFAULT_LOGS_DIR
name: Optional[str] = "logs"
version: Optional[str] = None
class TensorBoardLoggerConfig(BaseLoggerConfig):
name: Literal["tensorboard"] = "tensorboard"
log_graph: bool = False
class MLFlowLoggerConfig(BaseConfig):
logger_type: Literal["mlflow"] = "mlflow"
experiment_name: str = "default"
run_name: Optional[str] = None
save_dir: Optional[str] = "./mlruns"
class MLFlowLoggerConfig(BaseLoggerConfig):
name: Literal["mlflow"] = "mlflow"
tracking_uri: Optional[str] = None
tags: Optional[dict[str, Any]] = None
log_model: bool = False
@ -54,13 +60,28 @@ LoggerConfig = Annotated[
TensorBoardLoggerConfig,
MLFlowLoggerConfig,
],
Field(discriminator="logger_type"),
Field(discriminator="name"),
]
T = TypeVar("T", bound=LoggerConfig, contravariant=True)
class LoggerBuilder(Protocol, Generic[T]):
def __call__(
self,
config: T,
log_dir: Optional[Path] = None,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
) -> Logger: ...
def create_dvclive_logger(
config: DVCLiveConfig,
log_dir: Optional[data.PathLike] = None,
log_dir: Optional[Path] = None,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
) -> Logger:
try:
from dvclive.lightning import DVCLiveLogger # type: ignore
@ -72,8 +93,11 @@ def create_dvclive_logger(
) from error
return DVCLiveLogger(
dir=log_dir if log_dir is not None else config.dir,
run_name=config.run_name,
dir=log_dir if log_dir is not None else config.log_dir,
run_name=run_name if run_name is not None else config.run_name,
experiment=experiment_name
if experiment_name is not None
else config.experiment_name,
prefix=config.prefix,
log_model=config.log_model,
monitor_system=config.monitor_system,
@ -82,28 +106,58 @@ def create_dvclive_logger(
def create_csv_logger(
config: CSVLoggerConfig,
log_dir: Optional[data.PathLike] = None,
log_dir: Optional[Path] = None,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
) -> Logger:
from lightning.pytorch.loggers import CSVLogger
if log_dir is None:
log_dir = Path(config.log_dir)
if run_name is None:
run_name = config.run_name
if experiment_name is None:
experiment_name = config.experiment_name
name = run_name
if run_name is not None and experiment_name is not None:
name = str(Path(experiment_name) / run_name)
return CSVLogger(
save_dir=str(log_dir) if log_dir is not None else config.save_dir,
name=config.name,
version=config.version,
save_dir=str(log_dir),
name=name,
flush_logs_every_n_steps=config.flush_logs_every_n_steps,
)
def create_tensorboard_logger(
config: TensorBoardLoggerConfig,
log_dir: Optional[data.PathLike] = None,
log_dir: Optional[Path] = None,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
) -> Logger:
from lightning.pytorch.loggers import TensorBoardLogger
if log_dir is None:
log_dir = Path(config.log_dir)
if run_name is None:
run_name = config.run_name
if experiment_name is None:
experiment_name = config.experiment_name
name = run_name
if run_name is not None and experiment_name is not None:
name = str(Path(experiment_name) / run_name)
return TensorBoardLogger(
save_dir=str(log_dir) if log_dir is not None else config.save_dir,
name=config.name,
version=config.version,
save_dir=str(log_dir),
name=name,
log_graph=config.log_graph,
)
@ -111,6 +165,8 @@ def create_tensorboard_logger(
def create_mlflow_logger(
config: MLFlowLoggerConfig,
log_dir: Optional[data.PathLike] = None,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
) -> Logger:
try:
from lightning.pytorch.loggers import MLFlowLogger
@ -121,17 +177,25 @@ def create_mlflow_logger(
"or `uv add mlflow`"
) from error
if experiment_name is None:
experiment_name = config.experiment_name or "Default"
if log_dir is None:
log_dir = config.log_dir
return MLFlowLogger(
experiment_name=config.experiment_name,
run_name=config.run_name,
save_dir=str(log_dir) if log_dir is not None else config.save_dir,
experiment_name=experiment_name
if experiment_name is not None
else config.experiment_name,
run_name=run_name if run_name is not None else config.run_name,
save_dir=str(log_dir),
tracking_uri=config.tracking_uri,
tags=config.tags,
log_model=config.log_model,
)
LOGGER_FACTORY = {
LOGGER_FACTORY: Dict[str, LoggerBuilder] = {
"dvclive": create_dvclive_logger,
"csv": create_csv_logger,
"tensorboard": create_tensorboard_logger,
@ -141,7 +205,9 @@ LOGGER_FACTORY = {
def build_logger(
config: LoggerConfig,
log_dir: Optional[data.PathLike] = None,
log_dir: Optional[Path] = None,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
) -> Logger:
"""
Creates a logger instance from a validated Pydantic config object.
@ -150,14 +216,19 @@ def build_logger(
"Building logger with config: \n{}",
lambda: config.to_yaml_string(),
)
logger_type = config.logger_type
logger_type = config.name
if logger_type not in LOGGER_FACTORY:
raise ValueError(f"Unknown logger type: {logger_type}")
creation_func = LOGGER_FACTORY[logger_type]
return creation_func(config, log_dir=log_dir)
return creation_func(
config,
log_dir=log_dir,
experiment_name=experiment_name,
run_name=run_name,
)
def get_image_plotter(logger: Logger):
@ -173,8 +244,8 @@ def get_image_plotter(logger: Logger):
def plot_figure(name, figure, step):
image = _convert_figure_to_image(figure)
return logger.experiment.log_image(
run_id=logger.run_id,
image=image,
logger.run_id,
image,
key=name,
step=step,
)

View File

@ -1,8 +1,9 @@
from collections.abc import Sequence
from pathlib import Path
from typing import List, Optional
import torch
from lightning import Trainer
from lightning import Trainer, seed_everything
from lightning.pytorch.callbacks import Callback, ModelCheckpoint
from loguru import logger
from soundevent import data
@ -45,6 +46,8 @@ __all__ = [
"train",
]
DEFAULT_CHECKPOINT_DIR: Path = Path("outputs") / "checkpoints"
def train(
train_annotations: Sequence[data.ClipAnnotation],
@ -53,9 +56,15 @@ def train(
model_path: Optional[data.PathLike] = None,
train_workers: Optional[int] = None,
val_workers: Optional[int] = None,
checkpoint_dir: Optional[data.PathLike] = None,
log_dir: Optional[data.PathLike] = None,
checkpoint_dir: Optional[Path] = None,
log_dir: Optional[Path] = None,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
seed: Optional[int] = None,
):
if seed is not None:
seed_everything(seed)
config = config or FullTrainingConfig()
targets = build_targets(config.targets)
@ -107,6 +116,8 @@ def train(
targets=targets,
checkpoint_dir=checkpoint_dir,
log_dir=log_dir,
experiment_name=experiment_name,
run_name=run_name,
)
logger.info("Starting main training loop...")
@ -134,17 +145,32 @@ def build_trainer_callbacks(
targets: TargetProtocol,
preprocessor: PreprocessorProtocol,
config: EvaluationConfig,
checkpoint_dir: Optional[data.PathLike] = None,
checkpoint_dir: Optional[Path] = None,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
) -> List[Callback]:
if checkpoint_dir is None:
checkpoint_dir = "outputs/checkpoints"
checkpoint_dir = DEFAULT_CHECKPOINT_DIR
filename = "best-{epoch:02d}-{val_loss:.0f}"
if run_name is not None:
filename = f"run_{run_name}_{filename}"
if experiment_name is not None:
filename = f"experiment_{experiment_name}_{filename}"
model_checkpoint = ModelCheckpoint(
dirpath=str(checkpoint_dir),
save_top_k=1,
filename=filename,
monitor="total_loss/val",
)
model_checkpoint.CHECKPOINT_EQUALS_CHAR = "_" # type: ignore
return [
ModelCheckpoint(
dirpath=str(checkpoint_dir),
save_top_k=1,
monitor="total_loss/val",
),
model_checkpoint,
ValidationMetrics(
metrics=[
DetectionAveragePrecision(),
@ -162,15 +188,22 @@ def build_trainer_callbacks(
def build_trainer(
conf: FullTrainingConfig,
targets: TargetProtocol,
checkpoint_dir: Optional[data.PathLike] = None,
log_dir: Optional[data.PathLike] = None,
checkpoint_dir: Optional[Path] = None,
log_dir: Optional[Path] = None,
experiment_name: Optional[str] = None,
run_name: Optional[str] = None,
) -> Trainer:
trainer_conf = conf.train.trainer
logger.opt(lazy=True).debug(
"Building trainer with config: \n{config}",
config=lambda: trainer_conf.to_yaml_string(exclude_none=True),
)
train_logger = build_logger(conf.train.logger, log_dir=log_dir)
train_logger = build_logger(
conf.train.logger,
log_dir=log_dir,
experiment_name=experiment_name,
run_name=run_name,
)
train_logger.log_hyperparams(
conf.model_dump(
@ -187,6 +220,7 @@ def build_trainer(
config=conf.evaluation,
preprocessor=build_preprocessor(conf.preprocess),
checkpoint_dir=checkpoint_dir,
experiment_name=train_logger.name,
),
)