Compare commits

..

No commits in common. "main" and "v1.0.2" have entirely different histories.
main ... v1.0.2

33 changed files with 1642 additions and 3205 deletions

View File

@ -1,8 +0,0 @@
[bumpversion]
current_version = 1.3.0
commit = True
tag = True
[bumpversion:file:batdetect2/__init__.py]
[bumpversion:file:pyproject.toml]

View File

@ -1,29 +1,34 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
name: Python package
on:
push:
branches: ["main"]
branches: [ "main" ]
pull_request:
branches: ["main"]
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.9", "3.10", "3.11", "3.12"]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v3
with:
enable-cache: true
cache-dependency-glob: "uv.lock"
- name: Set up Python ${{ matrix.python-version }}
run: uv python install ${{ matrix.python-version }}
- name: Install the project
run: uv sync --all-extras --dev
- name: Test with pytest
run: uv run pytest
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install pytest
pip install .
- name: Test with pytest
run: |
pytest

View File

@ -1,3 +1,11 @@
# This workflow will upload a Python Package using Twine when a release is created
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
name: Upload Python Package
on:
@ -9,22 +17,23 @@ permissions:
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v3
with:
python-version: "3.x"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install build
- name: Build package
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v3
with:
python-version: '3.x'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install build
- name: Build package
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

13
.gitignore vendored
View File

@ -65,7 +65,7 @@ ipython_config.py
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm-python
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
@ -102,11 +102,10 @@ experiments/*
.virtual_documents
.ipynb_checkpoints
*.ipynb
# DO Include
!batdetect2_notebook.ipynb
# Batdetect Models [Include]
!batdetect2/models/*.pth.tar
!tests/data/*.wav
!tests/data/**/*.wav
notebooks/lightning_logs
example_data/preprocessed
# Bump2version
.bumpversion.cfg

View File

@ -29,7 +29,7 @@ pip install batdetect2
```
Alternatively, download this code from the repository (by clicking on the green button on top right) and unzip it.
Once unzipped, run this from extracted folder.
Once unziped, run this from extracted folder.
```bash
pip install .
@ -96,30 +96,9 @@ detections, features = api.process_spectrogram(spec)
You can integrate the detections or the extracted features to your custom analysis pipeline.
#### Using the Python API with HTTP
```python
from batdetect2 import api
import io
import requests
AUDIO_URL = "<insert your audio url here>"
# Process a whole file from a url
results = api.process_url(AUDIO_URL)
# Or, load audio and compute spectrograms
# 'requests.get(AUDIO_URL).content' fetches the raw bytes. You are free to use other sources to fetch the raw bytes
audio = api.load_audio(io.BytesIO(requests.get(AUDIO_URL).content))
spec = api.generate_spectrogram(audio)
# And process the audio or the spectrogram with the model
detections, features, spec = api.process_audio(audio)
detections, features = api.process_spectrogram(spec)
```
## Training the model on your own data
Take a look at the steps outlined in finetuning readme [here](batdetect2/finetune/readme.md) for a description of how to train your own model.
Take a look at the steps outlined in fintuning readme [here](bat_detect/finetune/readme.md) for a description of how to train your own model.
## Data and annotations

View File

@ -1,6 +1 @@
import logging
numba_logger = logging.getLogger("numba")
numba_logger.setLevel(logging.WARNING)
__version__ = "1.3.0"
__version__ = '1.0.2'

View File

@ -97,9 +97,8 @@ consult the API documentation in the code.
"""
import warnings
from typing import List, Optional, Tuple, BinaryIO, Any, Union
from typing import List, Optional, Tuple
from .types import AudioPath
import numpy as np
import torch
@ -121,12 +120,6 @@ from batdetect2.types import (
)
from batdetect2.utils.detector_utils import list_audio_files, load_model
import audioread
import os
import soundfile as sf
import requests
import io
# Remove warnings from torch
warnings.filterwarnings("ignore", category=UserWarning, module="torch")
@ -245,82 +238,34 @@ def generate_spectrogram(
def process_file(
path: AudioPath,
audio_file: str,
model: DetectionModel = MODEL,
config: Optional[ProcessingConfiguration] = None,
device: torch.device = DEVICE,
file_id: Optional[str] = None
) -> du.RunResults:
"""Process audio file with model.
Parameters
----------
path : AudioPath
Path to audio data.
audio_file : str
Path to audio file.
model : DetectionModel, optional
Detection model. Uses default model if not specified.
config : Optional[ProcessingConfiguration], optional
Processing configuration, by default None (uses default parameters).
device : torch.device, optional
Device to use, by default tries to use GPU if available.
file_id: Optional[str],
Give the data an id. If path is a string path to a file this can be ignored and
the file_id will be the basename of the file.
"""
if config is None:
config = CONFIG
return du.process_file(
path,
audio_file,
model,
config,
device,
file_id
)
def process_url(
url: str,
model: DetectionModel = MODEL,
config: Optional[ProcessingConfiguration] = None,
device: torch.device = DEVICE,
file_id: Optional[str] = None
) -> du.RunResults:
"""Process audio file with model.
Parameters
----------
url : str
HTTP URL to load the audio data from
model : DetectionModel, optional
Detection model. Uses default model if not specified.
config : Optional[ProcessingConfiguration], optional
Processing configuration, by default None (uses default parameters).
device : torch.device, optional
Device to use, by default tries to use GPU if available.
file_id: Optional[str],
Give the data an id. Defaults to the URL
"""
if config is None:
config = CONFIG
if file_id is None:
file_id = url
response = requests.get(url)
# Raise exception on HTTP error
response.raise_for_status()
# Retrieve body as raw bytes
raw_audio_data = response.content
return du.process_file(
io.BytesIO(raw_audio_data),
model,
config,
device,
file_id
)
def process_spectrogram(
spec: torch.Tensor,

View File

@ -1,12 +1,10 @@
"""BatDetect2 command line interface."""
import os
import click
from batdetect2 import api
from batdetect2.detector.parameters import DEFAULT_MODEL_PATH
from batdetect2.types import ProcessingConfiguration
from batdetect2.utils.detector_utils import save_results_to_file
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
@ -45,12 +43,6 @@ def cli():
default=False,
help="Extracts CNN call features",
)
@click.option(
"--chunk_size",
type=float,
default=2,
help="Specifies the duration of chunks in seconds. BatDetect2 will divide longer files into smaller chunks and process them independently. Larger chunks increase computation time and memory usage but may provide more contextual information for inference.",
)
@click.option(
"--spec_features",
is_flag=True,
@ -85,8 +77,6 @@ def detect(
audio_dir: str,
ann_dir: str,
detection_threshold: float,
time_expansion_factor: int,
chunk_size: float,
**args,
):
"""Detect bat calls in files in AUDIO_DIR and save predictions to ANN_DIR.
@ -113,23 +103,16 @@ def detect(
**{
**params,
**args,
"time_expansion": time_expansion_factor,
"spec_slices": False,
"chunk_size": chunk_size,
"chunk_size": 2,
"detection_threshold": detection_threshold,
}
)
if not args["quiet"]:
print_config(config)
# process files
error_files = []
for index, audio_file in enumerate(files):
for audio_file in files:
try:
if not args["quiet"]:
click.echo(f"\n{index} {audio_file}")
results = api.process_file(audio_file, model, config=config)
if args["save_preds_if_empty"] or (
@ -137,9 +120,10 @@ def detect(
):
results_path = audio_file.replace(audio_dir, ann_dir)
save_results_to_file(results, results_path)
except (RuntimeError, ValueError, LookupError, EOFError) as err:
except (RuntimeError, ValueError, LookupError) as err:
error_files.append(audio_file)
click.secho(f"Error processing file {audio_file}: {err}", fg="red")
click.secho(f"Error processing file!: {err}", fg="red")
raise err
click.echo(f"\nResults saved to: {ann_dir}")
@ -149,13 +133,5 @@ def detect(
click.echo(f" {err}")
def print_config(config: ProcessingConfiguration):
"""Print the processing configuration."""
click.echo("\nProcessing Configuration:")
click.echo(f"Time Expansion Factor: {config.get('time_expansion')}")
click.echo(f"Detection Threshold: {config.get('detection_threshold')}")
click.echo(f"Chunk Size: {config.get('chunk_size')}s")
if __name__ == "__main__":
cli()

View File

@ -1,27 +1,22 @@
"""Functions to compute features from predictions."""
from typing import Dict, Optional
import numpy as np
from batdetect2 import types
from batdetect2.detector.parameters import MAX_FREQ_HZ, MIN_FREQ_HZ
def convert_int_to_freq(spec_ind, spec_height, min_freq, max_freq):
"""Convert spectrogram index to frequency in Hz.""" ""
spec_ind = spec_height - spec_ind
return round(
(spec_ind / float(spec_height)) * (max_freq - min_freq) + min_freq, 2
)
def extract_spec_slices(spec, pred_nms):
"""Extract spectrogram slices from spectrogram.
The slices are extracted based on detected call locations.
def extract_spec_slices(spec, pred_nms, params):
"""
Extracts spectrogram slices from spectrogram based on detected call locations.
"""
x_pos = pred_nms["x_pos"]
y_pos = pred_nms["y_pos"]
bb_width = pred_nms["bb_width"]
bb_height = pred_nms["bb_height"]
slices = []
# add 20% padding either side of call
@ -40,273 +35,100 @@ def extract_spec_slices(spec, pred_nms):
return slices
def compute_duration(
prediction: types.Prediction,
**_,
) -> float:
"""Compute duration of call in seconds."""
return round(prediction["end_time"] - prediction["start_time"], 5)
def get_feature_names():
feature_names = [
"duration",
"low_freq_bb",
"high_freq_bb",
"bandwidth",
"max_power_bb",
"max_power",
"max_power_first",
"max_power_second",
"call_interval",
]
return feature_names
def compute_low_freq(
prediction: types.Prediction,
**_,
) -> float:
"""Compute lowest frequency in call in Hz."""
return int(prediction["low_freq"])
def compute_high_freq(
prediction: types.Prediction,
**_,
) -> float:
"""Compute highest frequency in call in Hz."""
return int(prediction["high_freq"])
def compute_bandwidth(
prediction: types.Prediction,
**_,
) -> float:
"""Compute bandwidth of call in Hz."""
return int(prediction["high_freq"] - prediction["low_freq"])
def compute_max_power_bb(
prediction: types.Prediction,
spec: Optional[np.ndarray] = None,
min_freq: int = MIN_FREQ_HZ,
max_freq: int = MAX_FREQ_HZ,
**_,
) -> float:
"""Compute frequency with maximum power in call in Hz.
This is the frequency with the maximum power in the bounding box of the
call.
def get_feats(spec, pred_nms, params):
"""
if spec is None:
return np.nan
x_start = max(0, prediction["x_pos"])
x_end = min(
spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"]
)
# y low is the lowest freq but it will have a higher value due to array
# starting at 0 at top
y_low = min(spec.shape[0] - 1, prediction["y_pos"])
y_high = max(0, prediction["y_pos"] - prediction["bb_height"])
spec_bb = spec[y_high:y_low, x_start:x_end]
power_per_freq_band = np.sum(spec_bb, axis=1)
try:
max_power_ind = np.argmax(power_per_freq_band)
except ValueError:
# If the call is too short, the bounding box might be empty.
# In this case, return NaN.
return np.nan
return int(
convert_int_to_freq(
y_high + max_power_ind,
spec.shape[0],
min_freq,
max_freq,
)
)
def compute_max_power(
prediction: types.Prediction,
spec: Optional[np.ndarray] = None,
min_freq: int = MIN_FREQ_HZ,
max_freq: int = MAX_FREQ_HZ,
**_,
) -> float:
"""Compute frequency with maximum power in during the call in Hz."""
if spec is None:
return np.nan
x_start = max(0, prediction["x_pos"])
x_end = min(
spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"]
)
spec_call = spec[:, x_start:x_end]
power_per_freq_band = np.sum(spec_call, axis=1)
max_power_ind = np.argmax(power_per_freq_band)
return int(
convert_int_to_freq(
max_power_ind,
spec.shape[0],
min_freq,
max_freq,
)
)
def compute_max_power_first(
prediction: types.Prediction,
spec: Optional[np.ndarray] = None,
min_freq: int = MIN_FREQ_HZ,
max_freq: int = MAX_FREQ_HZ,
**_,
) -> float:
"""Compute frequency with maximum power in first half of call in Hz."""
if spec is None:
return np.nan
x_start = max(0, prediction["x_pos"])
x_end = min(
spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"]
)
spec_call = spec[:, x_start:x_end]
first_half = spec_call[:, : int(spec_call.shape[1] / 2)]
power_per_freq_band = np.sum(first_half, axis=1)
max_power_ind = np.argmax(power_per_freq_band)
return int(
convert_int_to_freq(
max_power_ind,
spec.shape[0],
min_freq,
max_freq,
)
)
def compute_max_power_second(
prediction: types.Prediction,
spec: Optional[np.ndarray] = None,
min_freq: int = MIN_FREQ_HZ,
max_freq: int = MAX_FREQ_HZ,
**_,
) -> float:
"""Compute frequency with maximum power in second half of call in Hz."""
if spec is None:
return np.nan
x_start = max(0, prediction["x_pos"])
x_end = min(
spec.shape[1] - 1, prediction["x_pos"] + prediction["bb_width"]
)
spec_call = spec[:, x_start:x_end]
second_half = spec_call[:, int(spec_call.shape[1] / 2) :]
power_per_freq_band = np.sum(second_half, axis=1)
max_power_ind = np.argmax(power_per_freq_band)
return int(
convert_int_to_freq(
max_power_ind,
spec.shape[0],
min_freq,
max_freq,
)
)
def compute_call_interval(
prediction: types.Prediction,
previous: Optional[types.Prediction] = None,
**_,
) -> float:
"""Compute time between this call and the previous call in seconds."""
if previous is None:
return np.nan
return round(prediction["start_time"] - previous["end_time"], 5)
# NOTE: The order of the features in this dictionary is important. The
# features are extracted in this order and the order of the columns in the
# output csv file is determined by this order. In order to avoid breaking
# changes in the output csv file, new features should be added to the end of
# this dictionary.
FEATURES: Dict[str, types.FeatureExtractor] = {
"duration": compute_duration,
"low_freq_bb": compute_low_freq,
"high_freq_bb": compute_high_freq,
"bandwidth": compute_bandwidth,
"max_power_bb": compute_max_power_bb,
"max_power": compute_max_power,
"max_power_first": compute_max_power_first,
"max_power_second": compute_max_power_second,
"call_interval": compute_call_interval,
}
def get_feats(
spec: np.ndarray,
pred_nms: types.PredictionResults,
params: types.FeatureExtractionParameters,
):
"""Extract features from spectrogram based on detected call locations.
The features extracted are:
- duration: duration of call in seconds
- low_freq: lowest frequency in call in kHz
- high_freq: highest frequency in call in kHz
- bandwidth: high_freq - low_freq
- max_power_bb: frequency with maximum power in call in kHz
- max_power: frequency with maximum power in spectrogram in kHz
- max_power_first: frequency with maximum power in first half of call in
kHz.
- max_power_second: frequency with maximum power in second half of call in
kHz.
- call_interval: time between this call and the previous call in seconds
Consider re-extracting spectrogram for this to get better temporal
resolution.
Extracts features from spectrogram based on detected call locations.
Condsider re-extracting spectrogram for this to get better temporal resolution.
For more possible features check out:
https://github.com/YvesBas/Tadarida-D/blob/master/Manual_Tadarida-D.odt
Parameters
----------
spec : np.ndarray
Spectrogram from which to extract features.
pred_nms : types.PredictionResults
Information about detected calls from which to extract features.
params : types.FeatureExtractionParameters
Parameters for feature extraction.
Returns
-------
features : np.ndarray
Extracted features for each detected call. Shape is
(num_detections, num_features).
"""
x_pos = pred_nms["x_pos"]
y_pos = pred_nms["y_pos"]
bb_width = pred_nms["bb_width"]
bb_height = pred_nms["bb_height"]
feature_names = get_feature_names()
num_detections = len(pred_nms["det_probs"])
features = np.empty((num_detections, len(FEATURES)), dtype=np.float32)
previous = None
features = (
np.ones((num_detections, len(feature_names)), dtype=np.float32) * -1
)
for row in range(num_detections):
prediction: types.Prediction = {
"det_prob": float(pred_nms["det_probs"][row]),
"class_prob": pred_nms["class_probs"][:, row],
"start_time": float(pred_nms["start_times"][row]),
"end_time": float(pred_nms["end_times"][row]),
"low_freq": float(pred_nms["low_freqs"][row]),
"high_freq": float(pred_nms["high_freqs"][row]),
"x_pos": int(pred_nms["x_pos"][row]),
"y_pos": int(pred_nms["y_pos"][row]),
"bb_width": int(pred_nms["bb_width"][row]),
"bb_height": int(pred_nms["bb_height"][row]),
}
for ff in range(num_detections):
x_start = int(np.maximum(0, x_pos[ff]))
x_end = int(
np.minimum(spec.shape[1] - 1, np.round(x_pos[ff] + bb_width[ff]))
)
# y low is the lowest freq but it will have a higher value due to array starting at 0 at top
y_low = int(np.minimum(spec.shape[0] - 1, y_pos[ff]))
y_high = int(np.maximum(0, np.round(y_pos[ff] - bb_height[ff])))
spec_slice = spec[:, x_start:x_end]
for col, feature in enumerate(FEATURES.values()):
features[row, col] = feature(
prediction,
previous=previous,
spec=spec,
**params,
if spec_slice.shape[1] > 1:
features[ff, 0] = round(
pred_nms["end_times"][ff] - pred_nms["start_times"][ff], 5
)
features[ff, 1] = int(pred_nms["low_freqs"][ff])
features[ff, 2] = int(pred_nms["high_freqs"][ff])
features[ff, 3] = int(
pred_nms["high_freqs"][ff] - pred_nms["low_freqs"][ff]
)
features[ff, 4] = int(
convert_int_to_freq(
y_high + spec_slice[y_high:y_low, :].sum(1).argmax(),
spec.shape[0],
params["min_freq"],
params["max_freq"],
)
)
features[ff, 5] = int(
convert_int_to_freq(
spec_slice.sum(1).argmax(),
spec.shape[0],
params["min_freq"],
params["max_freq"],
)
)
hlf_val = spec_slice.shape[1] // 2
features[ff, 6] = int(
convert_int_to_freq(
spec_slice[:, :hlf_val].sum(1).argmax(),
spec.shape[0],
params["min_freq"],
params["max_freq"],
)
)
features[ff, 7] = int(
convert_int_to_freq(
spec_slice[:, hlf_val:].sum(1).argmax(),
spec.shape[0],
params["min_freq"],
params["max_freq"],
)
)
previous = prediction
if ff > 0:
features[ff, 8] = round(
pred_nms["start_times"][ff]
- pred_nms["start_times"][ff - 1],
5,
)
return features
def get_feature_names():
"""Get names of features in the order they are extracted."""
return list(FEATURES.keys())

View File

@ -1,5 +1,7 @@
import glob
import json
import os
import random
import numpy as np

View File

@ -1,10 +1,5 @@
"""Types used in the code base."""
from typing import List, NamedTuple, Optional, Union, Any, BinaryIO
import audioread
import os
import soundfile as sf
from typing import List, NamedTuple, Optional
import numpy as np
import torch
@ -22,7 +17,7 @@ except ImportError:
try:
from typing import NotRequired # type: ignore
from typing import NotRequired
except ImportError:
from typing_extensions import NotRequired
@ -30,13 +25,10 @@ except ImportError:
__all__ = [
"Annotation",
"DetectionModel",
"FeatureExtractionParameters",
"FeatureExtractor",
"FileAnnotations",
"ModelOutput",
"ModelParameters",
"NonMaximumSuppressionConfig",
"Prediction",
"PredictionResults",
"ProcessingConfiguration",
"ResultParams",
@ -44,9 +36,6 @@ __all__ = [
"SpectrogramParameters",
]
AudioPath = Union[
str, int, os.PathLike[Any], sf.SoundFile, audioread.AudioFile, BinaryIO
]
class SpectrogramParameters(TypedDict):
"""Parameters for generating spectrograms."""
@ -323,40 +312,6 @@ class ModelOutput(NamedTuple):
"""Tensor with intermediate features."""
class Prediction(TypedDict):
"""Singe prediction."""
det_prob: float
"""Detection probability."""
x_pos: int
"""X position of the detection in pixels."""
y_pos: int
"""Y position of the detection in pixels."""
bb_width: int
"""Width of the detection in pixels."""
bb_height: int
"""Height of the detection in pixels."""
start_time: float
"""Start time of the detection in seconds."""
end_time: float
"""End time of the detection in seconds."""
low_freq: float
"""Low frequency of the detection in Hz."""
high_freq: float
"""High frequency of the detection in Hz."""
class_prob: np.ndarray
"""Vector holding the probability of each class."""
class PredictionResults(TypedDict):
"""Results of the prediction.
@ -463,16 +418,6 @@ class NonMaximumSuppressionConfig(TypedDict):
"""Threshold for detection probability."""
class FeatureExtractionParameters(TypedDict):
"""Parameters that control the feature extraction function."""
min_freq: int
"""Minimum frequency to consider in Hz."""
max_freq: int
"""Maximum frequency to consider in Hz."""
class HeatmapParameters(TypedDict):
"""Parameters that control the heatmap generation function."""
@ -528,11 +473,3 @@ class AnnotationGroup(TypedDict):
y_inds: NotRequired[np.ndarray]
"""Y coordinate of the annotations in the spectrogram."""
class FeatureExtractor(Protocol):
"""Protocol for feature extractors."""
def __call__(self, prediction: Prediction, **kwargs) -> Union[float, int]:
"""Extract features from a prediction."""
...

View File

@ -1,67 +1,34 @@
import warnings
from typing import Optional, Tuple, Union, Any, BinaryIO
from ..types import AudioPath
from typing import Optional, Tuple
import librosa
import librosa.core.spectrum
import numpy as np
import torch
import audioread
import os
import soundfile as sf
from batdetect2.detector import parameters
from . import wavfile
__all__ = [
"load_audio",
"load_audio_and_samplerate",
"generate_spectrogram",
"pad_audio",
]
def time_to_x_coords(
time_in_file: float,
samplerate: float = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
) -> float:
nfft = np.floor(window_duration * samplerate) # int() uses floor
noverlap = np.floor(window_overlap * nfft)
return (time_in_file * samplerate - noverlap) / (nfft - noverlap)
def time_to_x_coords(time_in_file, sampling_rate, fft_win_length, fft_overlap):
nfft = np.floor(fft_win_length * sampling_rate) # int() uses floor
noverlap = np.floor(fft_overlap * nfft)
return (time_in_file * sampling_rate - noverlap) / (nfft - noverlap)
def x_coords_to_time(
x_pos: int,
samplerate: float = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
) -> float:
n_fft = np.floor(window_duration * samplerate)
n_overlap = np.floor(window_overlap * n_fft)
n_step = n_fft - n_overlap
return ((x_pos * n_step) + n_overlap) / samplerate
# NOTE this is also defined in post_process
def x_coords_to_time(x_pos, sampling_rate, fft_win_length, fft_overlap):
nfft = np.floor(fft_win_length * sampling_rate)
noverlap = np.floor(fft_overlap * nfft)
return ((x_pos * (nfft - noverlap)) + noverlap) / sampling_rate
# return (1.0 - fft_overlap) * fft_win_length * (x_pos + 0.5) # 0.5 is for center of temporal window
def x_coord_to_sample(
x_pos: int,
samplerate: float = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
resize_factor: float = parameters.RESIZE_FACTOR,
) -> int:
n_fft = np.floor(window_duration * samplerate)
n_overlap = np.floor(window_overlap * n_fft)
n_step = n_fft - n_overlap
x_pos = int(x_pos / resize_factor)
return int((x_pos * n_step) + n_overlap)
def generate_spectrogram(
audio,
sampling_rate,
@ -147,20 +114,21 @@ def generate_spectrogram(
return spec, spec_for_viz
def load_audio(
path: AudioPath,
audio_file: str,
time_exp_fact: float,
target_samp_rate: int,
scale: bool = False,
max_duration: Optional[float] = None,
) -> Tuple[int, np.ndarray ]:
) -> Tuple[int, np.ndarray]:
"""Load an audio file and resample it to the target sampling rate.
The audio is also scaled to [-1, 1] and clipped to the maximum duration.
Only mono files are supported.
Args:
path (string, int, pathlib.Path, soundfile.SoundFile, audioread object, or file-like object): path to the input file.
audio_file (str): Path to the audio file.
target_samp_rate (int): Target sampling rate.
scale (bool): Whether to scale the audio to [-1, 1].
max_duration (float): Maximum duration of the audio in seconds.
@ -172,50 +140,20 @@ def load_audio(
Raises:
ValueError: If the audio file is stereo.
"""
sample_rate, audio_data, _ = load_audio_and_samplerate(path, time_exp_fact, target_samp_rate, scale, max_duration)
return sample_rate, audio_data
def load_audio_and_samplerate(
path: AudioPath,
time_exp_fact: float,
target_samp_rate: int,
scale: bool = False,
max_duration: Optional[float] = None,
) -> Tuple[int, np.ndarray, Union[float, int]]:
"""Load an audio file and resample it to the target sampling rate.
The audio is also scaled to [-1, 1] and clipped to the maximum duration.
Only mono files are supported.
Args:
path (string, int, pathlib.Path, soundfile.SoundFile, audioread object, or file-like object): path to the input file.
target_samp_rate (int): Target sampling rate.
scale (bool): Whether to scale the audio to [-1, 1].
max_duration (float): Maximum duration of the audio in seconds.
Returns:
sampling_rate: The sampling rate of the audio.
audio_raw: The audio signal in a numpy array.
file_sampling_rate: The original sampling rate of the audio
Raises:
ValueError: If the audio file is stereo.
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=wavfile.WavFileWarning)
# sampling_rate, audio_raw = wavfile.read(audio_file)
audio_raw, file_sampling_rate = librosa.load(
path,
audio_raw, sampling_rate = librosa.load(
audio_file,
sr=None,
dtype=np.float32,
)
if len(audio_raw.shape) > 1:
raise ValueError("Currently does not handle stereo files")
sampling_rate = file_sampling_rate * time_exp_fact
sampling_rate = sampling_rate * time_exp_fact
# resample - need to do this after correcting for time expansion
sampling_rate_old = sampling_rate
@ -243,121 +181,58 @@ def load_audio_and_samplerate(
audio_raw = audio_raw - audio_raw.mean()
audio_raw = audio_raw / (np.abs(audio_raw).max() + 10e-6)
return sampling_rate, audio_raw, file_sampling_rate
def compute_spectrogram_width(
length: int,
samplerate: int = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
resize_factor: float = parameters.RESIZE_FACTOR,
) -> int:
n_fft = int(window_duration * samplerate)
n_overlap = int(window_overlap * n_fft)
n_step = n_fft - n_overlap
width = (length - n_overlap) // n_step
return int(width * resize_factor)
return sampling_rate, audio_raw
def pad_audio(
audio: np.ndarray,
samplerate: int = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
resize_factor: float = parameters.RESIZE_FACTOR,
divide_factor: int = parameters.SPEC_DIVIDE_FACTOR,
fixed_width: Optional[int] = None,
audio_raw,
fs,
ms,
overlap_perc,
resize_factor,
divide_factor,
fixed_width=None,
):
"""Pad audio to be evenly divisible by `divide_factor`.
# Adds zeros to the end of the raw data so that the generated sepctrogram
# will be evenly divisible by `divide_factor`
# Also deals with very short audio clips and fixed_width during training
This function pads the audio signal with zeros to ensure that the
generated spectrogram length will be evenly divisible by `divide_factor`.
This is important for the model to work correctly.
# This code could be clearer, clean up
nfft = int(ms * fs)
noverlap = int(overlap_perc * nfft)
step = nfft - noverlap
min_size = int(divide_factor * (1.0 / resize_factor))
spec_width = (audio_raw.shape[0] - noverlap) // step
spec_width_rs = spec_width * resize_factor
This `divide_factor` comes from the model architecture as it downscales
the spectrogram by this factor, so the input must be divisible by this
integer number.
Parameters
----------
audio : np.ndarray
The audio signal.
samplerate : int
The sampling rate of the audio signal.
window_size : float
The window size in seconds used for the spectrogram computation.
window_overlap : float
The overlap between windows in the spectrogram computation.
resize_factor : float
This factor is used to resize the spectrogram after the STFT
computation. Default is 0.5 which means that the spectrogram will be
reduced by half. Important to take into account for the final size of
the spectrogram.
divide_factor : int
The factor by which the spectrogram will be divided.
fixed_width : int, optional
If provided, the audio will be padded or cut so that the resulting
spectrogram width will be equal to this value.
Returns
-------
np.ndarray
The padded audio signal.
"""
spec_width = compute_spectrogram_width(
audio.shape[0],
samplerate=samplerate,
window_duration=window_duration,
window_overlap=window_overlap,
resize_factor=resize_factor,
)
if fixed_width:
target_samples = x_coord_to_sample(
fixed_width,
samplerate=samplerate,
window_duration=window_duration,
window_overlap=window_overlap,
resize_factor=resize_factor,
if fixed_width is not None and spec_width < fixed_width:
# too small
# used during training to ensure all the batches are the same size
diff = fixed_width * step + noverlap - audio_raw.shape[0]
audio_raw = np.hstack(
(audio_raw, np.zeros(diff, dtype=audio_raw.dtype))
)
if spec_width < fixed_width:
# need to be at least min_size
diff = target_samples - audio.shape[0]
return np.hstack((audio, np.zeros(diff, dtype=audio.dtype)))
elif fixed_width is not None and spec_width > fixed_width:
# too big
# used during training to ensure all the batches are the same size
diff = fixed_width * step + noverlap - audio_raw.shape[0]
audio_raw = audio_raw[:diff]
if spec_width > fixed_width:
return audio[:target_samples]
return audio
min_width = int(divide_factor / resize_factor)
if spec_width < min_width:
target_samples = x_coord_to_sample(
min_width,
samplerate=samplerate,
window_duration=window_duration,
window_overlap=window_overlap,
resize_factor=resize_factor,
elif (
spec_width_rs < min_size
or (np.floor(spec_width_rs) % divide_factor) != 0
):
# need to be at least min_size
div_amt = np.ceil(spec_width_rs / float(divide_factor))
div_amt = np.maximum(1, div_amt)
target_size = int(div_amt * divide_factor * (1.0 / resize_factor))
diff = target_size * step + noverlap - audio_raw.shape[0]
audio_raw = np.hstack(
(audio_raw, np.zeros(diff, dtype=audio_raw.dtype))
)
diff = target_samples - audio.shape[0]
return np.hstack((audio, np.zeros(diff, dtype=audio.dtype)))
if (spec_width % divide_factor) == 0:
return audio
target_width = int(np.ceil(spec_width / divide_factor)) * divide_factor
target_samples = x_coord_to_sample(
target_width,
samplerate=samplerate,
window_duration=window_duration,
window_overlap=window_overlap,
resize_factor=resize_factor,
)
diff = target_samples - audio.shape[0]
return np.hstack((audio, np.zeros(diff, dtype=audio.dtype)))
return audio_raw
def gen_mag_spectrogram(x, fs, ms, overlap_perc):
@ -372,11 +247,7 @@ def gen_mag_spectrogram(x, fs, ms, overlap_perc):
# compute spec
spec, _ = librosa.core.spectrum._spectrogram(
y=x,
power=1,
n_fft=nfft,
hop_length=step,
center=False,
y=x, power=1, n_fft=nfft, hop_length=step, center=False
)
# remove DC component and flip vertical orientation

View File

@ -1,19 +1,12 @@
import json
import os
from typing import Any, Iterator, List, Optional, Tuple, Union, BinaryIO
from ..types import AudioPath
from typing import Any, Iterator, List, Optional, Tuple, Union
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
try:
from numpy.exceptions import AxisError
except ImportError:
from numpy import AxisError # type: ignore
import batdetect2.detector.compute_features as feats
import batdetect2.detector.post_process as pp
import batdetect2.utils.audio_utils as au
@ -32,13 +25,6 @@ from batdetect2.types import (
SpectrogramParameters,
)
import audioread
import os
import io
import soundfile as sf
import hashlib
import uuid
__all__ = [
"load_model",
"list_audio_files",
@ -80,6 +66,7 @@ def list_audio_files(ip_dir: str) -> List[str]:
Raises:
FileNotFoundError: Input directory not found.
"""
matches = []
for root, _, filenames in os.walk(ip_dir):
@ -93,7 +80,6 @@ def load_model(
model_path: str = DEFAULT_MODEL_PATH,
load_weights: bool = True,
device: Optional[torch.device] = None,
weights_only: bool = True,
) -> Tuple[DetectionModel, ModelParameters]:
"""Load model from file.
@ -114,11 +100,7 @@ def load_model(
if not os.path.isfile(model_path):
raise FileNotFoundError("Model file not found.")
net_params = torch.load(
model_path,
map_location=device,
weights_only=weights_only,
)
net_params = torch.load(model_path, map_location=device)
params = net_params["params"]
@ -161,19 +143,7 @@ def load_model(
def _merge_results(predictions, spec_feats, cnn_feats, spec_slices):
predictions_m = {
"det_probs": np.array([]),
"x_pos": np.array([]),
"y_pos": np.array([]),
"bb_widths": np.array([]),
"bb_heights": np.array([]),
"start_times": np.array([]),
"end_times": np.array([]),
"low_freqs": np.array([]),
"high_freqs": np.array([]),
"class_probs": np.array([]),
}
predictions_m = {}
num_preds = np.sum([len(pp["det_probs"]) for pp in predictions])
if num_preds > 0:
@ -181,6 +151,10 @@ def _merge_results(predictions, spec_feats, cnn_feats, spec_slices):
predictions_m[key] = np.hstack(
[pp[key] for pp in predictions if pp["det_probs"].shape[0] > 0]
)
else:
# hack in case where no detected calls as we need some of the key
# names in dict
predictions_m = predictions[0]
if len(spec_feats) > 0:
spec_feats = np.vstack(spec_feats)
@ -252,19 +226,11 @@ def format_single_result(
Returns:
dict: Results in the format expected by the annotation tool.
"""
try:
# Get a single class prediction for the file
class_overall = pp.overall_class_pred(
predictions["det_probs"],
predictions["class_probs"],
)
class_name = class_names[np.argmax(class_overall)]
annotations = get_annotations_from_preds(predictions, class_names)
except (AxisError, ValueError):
# No detections
class_overall = np.zeros(len(class_names))
class_name = "None"
annotations = []
# Get a single class prediction for the file
class_overall = pp.overall_class_pred(
predictions["det_probs"],
predictions["class_probs"],
)
return {
"id": file_id,
@ -273,8 +239,8 @@ def format_single_result(
"notes": "Automatically generated.",
"time_exp": time_exp,
"duration": round(float(duration), 4),
"annotation": annotations,
"class_name": class_name,
"annotation": get_annotations_from_preds(predictions, class_names),
"class_name": class_names[np.argmax(class_overall)],
}
@ -287,7 +253,6 @@ def convert_results(
spec_feats,
cnn_feats,
spec_slices,
nyquist_freq: Optional[float] = None,
) -> RunResults:
"""Convert results to dictionary as expected by the annotation tool.
@ -303,8 +268,8 @@ def convert_results(
Returns:
dict: Dictionary with results.
"""
"""
pred_dict = format_single_result(
file_id,
time_exp,
@ -313,14 +278,6 @@ def convert_results(
params["class_names"],
)
# Remove high frequency detections
if nyquist_freq is not None:
pred_dict["annotation"] = [
pred
for pred in pred_dict["annotation"]
if pred["high_freq"] <= nyquist_freq
]
# combine into final results dictionary
results: RunResults = {
"pred_dict": pred_dict,
@ -353,6 +310,7 @@ def save_results_to_file(results, op_path: str) -> None:
Args:
results (dict): Results.
op_path (str): Output path.
"""
# make directory if it does not exist
if not os.path.isdir(os.path.dirname(op_path)):
@ -514,6 +472,7 @@ def iterate_over_chunks(
chunk_start : float
Start time of chunk in seconds.
chunk : np.ndarray
"""
nsamples = audio.shape[0]
duration_full = nsamples / samplerate
@ -719,6 +678,7 @@ def process_audio_array(
The array is of shape (num_detections, num_features).
spec : torch.Tensor
Spectrogram of the audio used as input.
"""
pred_nms, features, spec = _process_audio_array(
audio,
@ -737,11 +697,10 @@ def process_audio_array(
def process_file(
path: AudioPath,
audio_file: str,
model: DetectionModel,
config: ProcessingConfiguration,
device: torch.device,
file_id: Optional[str] = None
) -> Union[RunResults, Any]:
"""Process a single audio file with detection model.
@ -750,7 +709,7 @@ def process_file(
Parameters
----------
path : AudioPath
audio_file : str
Path to audio file.
model : torch.nn.Module
@ -758,9 +717,6 @@ def process_file(
config : ProcessingConfiguration
Configuration for processing.
file_id: Optional[str],
Give the data an id. Defaults to the filename if path is a string. Otherwise an md5 will be calculated from the binary data.
Returns
-------
@ -775,16 +731,15 @@ def process_file(
spec_slices = []
# load audio file
sampling_rate, audio_full, file_samp_rate = au.load_audio_and_samplerate(
path,
print("time_exp_fact", config.get("time_expansion", 1) or 1)
sampling_rate, audio_full = au.load_audio(
audio_file,
time_exp_fact=config.get("time_expansion", 1) or 1,
target_samp_rate=config["target_samp_rate"],
scale=config["scale_raw_audio"],
max_duration=config.get("max_duration"),
)
orig_samp_rate = file_samp_rate * (config.get("time_expansion") or 1)
# loop through larger file and split into chunks
# TODO: fix so that it overlaps correctly and takes care of
# duplicate detections at borders
@ -803,7 +758,7 @@ def process_file(
)
# convert to numpy
spec_np = spec.detach().cpu().numpy().squeeze()
spec_np = spec.detach().cpu().numpy()
# add chunk time to start and end times
pred_nms["start_times"] += chunk_time
@ -823,7 +778,9 @@ def process_file(
if config["spec_slices"]:
# FIX: This is not currently working. Returns empty slices
spec_slices.extend(feats.extract_spec_slices(spec_np, pred_nms))
spec_slices.extend(
feats.extract_spec_slices(spec_np, pred_nms, config)
)
# Merge results from chunks
predictions, spec_feats, cnn_feats, spec_slices = _merge_results(
@ -833,13 +790,9 @@ def process_file(
spec_slices,
)
_file_id = file_id
if _file_id is None:
_file_id = _generate_id(path)
# convert results to a dictionary in the right format
results = convert_results(
file_id=_file_id,
file_id=os.path.basename(audio_file),
time_exp=config.get("time_expansion", 1) or 1,
duration=audio_full.shape[0] / float(sampling_rate),
params=config,
@ -847,7 +800,6 @@ def process_file(
spec_feats=spec_feats,
cnn_feats=cnn_feats,
spec_slices=spec_slices,
nyquist_freq=orig_samp_rate / 2,
)
# summarize results
@ -859,22 +811,6 @@ def process_file(
return results
def _generate_id(path: AudioPath) -> str:
""" Generate an id based on the path.
If the path is a str or PathLike it will parsed as the basename.
This should ensure backwards compatibility with previous versions.
"""
if isinstance(path, str) or isinstance(path, os.PathLike):
return os.path.basename(path)
elif isinstance(path, (BinaryIO, io.BytesIO)):
path.seek(0)
md5 = hashlib.md5(path.read()).hexdigest()
path.seek(0)
return md5
else:
return str(uuid.uuid4())
def summarize_results(results, predictions, config):
"""Print summary of results."""

1337
pdm.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,82 +1,82 @@
[tool.pdm]
[tool.pdm.dev-dependencies]
dev = [
"pytest>=7.2.2",
]
[project]
name = "batdetect2"
version = "1.3.0"
version = "1.0.2"
description = "Deep learning model for detecting and classifying bat echolocation calls in high frequency audio recordings."
authors = [
{ "name" = "Oisin Mac Aodha", "email" = "oisin.macaodha@ed.ac.uk" },
{ "name" = "Santiago Martinez Balvanera", "email" = "santiago.balvanera.20@ucl.ac.uk" },
{ "name" = "Oisin Mac Aodha", "email" = "oisin.macaodha@ed.ac.uk" },
{ "name" = "Santiago Martinez Balvanera", "email" = "santiago.balvanera.20@ucl.ac.uk" }
]
dependencies = [
"click>=8.1.7",
"librosa>=0.10.1",
"matplotlib>=3.7.1",
"numpy>=1.23.5",
"pandas>=1.5.3",
"scikit-learn>=1.2.2",
"scipy>=1.10.1",
"torch>=1.13.1,<2.5.0",
"torchaudio>=1.13.1,<2.5.0",
"torchvision>=0.14.0",
"librosa",
"matplotlib",
"numpy",
"pandas",
"scikit-learn",
"scipy",
"torch>=1.13.1,<2",
"torchaudio",
"torchvision",
"click",
]
requires-python = ">=3.9,<3.13"
requires-python = ">=3.8,<3.11"
readme = "README.md"
license = { text = "CC-by-nc-4" }
classifiers = [
"Development Status :: 4 - Beta",
"Intended Audience :: Science/Research",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: Multimedia :: Sound/Audio :: Analysis",
"Development Status :: 4 - Beta",
"Intended Audience :: Science/Research",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: Multimedia :: Sound/Audio :: Analysis",
]
keywords = [
"bat",
"echolocation",
"deep learning",
"audio",
"machine learning",
"classification",
"detection",
"bat",
"echolocation",
"deep learning",
"audio",
"machine learning",
"classification",
"detection",
]
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
requires = ["pdm-pep517>=1.0.0"]
build-backend = "pdm.pep517.api"
[project.scripts]
batdetect2 = "batdetect2.cli:cli"
[tool.uv]
dev-dependencies = [
"debugpy>=1.8.8",
"hypothesis>=6.118.7",
"pyright>=1.1.388",
"pytest>=7.2.2",
"ruff>=0.7.3",
[tool.black]
line-length = 80
[[tool.mypy.overrides]]
module = [
"librosa",
"pandas",
]
ignore_missing_imports = true
[tool.ruff]
line-length = 79
target-version = "py39"
[tool.pylsp-mypy]
enabled = false
live_mode = true
strict = true
[tool.ruff.format]
docstring-code-format = true
docstring-code-line-length = 79
[tool.ruff.lint]
select = ["E4", "E7", "E9", "F", "B", "Q", "I", "NPY201"]
[tool.ruff.lint.pydocstyle]
[tool.pydocstyle]
convention = "numpy"
[tool.pyright]
include = ["batdetect2", "tests"]
include = [
"bat_detect",
"tests",
]
venvPath = "."
venv = ".venv"
pythonVersion = "3.9"
pythonPlatform = "All"

View File

@ -1,40 +0,0 @@
from pathlib import Path
from typing import List
import pytest
@pytest.fixture
def example_data_dir() -> Path:
pkg_dir = Path(__file__).parent.parent
example_data_dir = pkg_dir / "example_data"
assert example_data_dir.exists()
return example_data_dir
@pytest.fixture
def example_audio_dir(example_data_dir: Path) -> Path:
example_audio_dir = example_data_dir / "audio"
assert example_audio_dir.exists()
return example_audio_dir
@pytest.fixture
def example_audio_files(example_audio_dir: Path) -> List[Path]:
audio_files = list(example_audio_dir.glob("*.[wW][aA][vV]"))
assert len(audio_files) == 3
return audio_files
@pytest.fixture
def data_dir() -> Path:
dir = Path(__file__).parent / "data"
assert dir.exists()
return dir
@pytest.fixture
def contrib_dir(data_dir) -> Path:
dir = data_dir / "contrib"
assert dir.exists()
return dir

View File

@ -2,21 +2,17 @@
import os
from glob import glob
from pathlib import Path
import numpy as np
import soundfile as sf
import torch
from torch import nn
from batdetect2 import api
import io
PKG_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
TEST_DATA_DIR = os.path.join(PKG_DIR, "example_data", "audio")
TEST_DATA = glob(os.path.join(TEST_DATA_DIR, "*.wav"))
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
def test_load_model_with_default_params():
"""Test loading model with default parameters."""
@ -266,44 +262,3 @@ def test_process_file_with_spec_slices():
assert "spec_slices" in results
assert isinstance(results["spec_slices"], list)
assert len(results["spec_slices"]) == len(detections)
def test_process_file_with_empty_predictions_does_not_fail(
tmp_path: Path,
):
"""Test process file with empty predictions does not fail."""
# Create empty file
empty_file = tmp_path / "empty.wav"
empty_wav = np.zeros((0, 1), dtype=np.float32)
sf.write(empty_file, empty_wav, 256000)
# Process file
results = api.process_file(str(empty_file))
assert results is not None
assert len(results["pred_dict"]["annotation"]) == 0
def test_process_file_file_id_defaults_to_basename():
"""Test that process_file assigns basename as an id if no file_id is provided."""
# Recording donated by @@kdarras
basename = "20230322_172000_selec2.wav"
path = os.path.join(DATA_DIR, basename)
output = api.process_file(path)
predictions = output["pred_dict"]
id = predictions["id"]
assert id == basename
def test_bytesio_file_id_defaults_to_md5():
"""Test that process_file assigns an md5 sum as an id if no file_id is provided when using binary data."""
# Recording donated by @@kdarras
basename = "20230322_172000_selec2.wav"
path = os.path.join(DATA_DIR, basename)
with open(path, "rb") as f:
data = io.BytesIO(f.read())
output = api.process_file(data)
predictions = output["pred_dict"]
id = predictions["id"]
assert id == "7ade9ebf1a9fe5477ff3a2dc57001929"

View File

@ -1,156 +0,0 @@
import numpy as np
import torch
import torch.nn.functional as F
from hypothesis import given
from hypothesis import strategies as st
from batdetect2.detector import parameters
from batdetect2.utils import audio_utils, detector_utils
import io
import os
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_can_compute_correct_spectrogram_width(duration: float):
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
spectrogram, _ = audio_utils.generate_spectrogram(
audio,
samplerate,
params,
)
# convert to pytorch
spectrogram = torch.from_numpy(spectrogram)
# add batch and channel dimensions
spectrogram = spectrogram.unsqueeze(0).unsqueeze(0)
# resize the spec
resize_factor = params["resize_factor"]
spec_op_shape = (
int(params["spec_height"] * resize_factor),
int(spectrogram.shape[-1] * resize_factor),
)
spectrogram = F.interpolate(
spectrogram,
size=spec_op_shape,
mode="bilinear",
align_corners=False,
)
expected_width = audio_utils.compute_spectrogram_width(
length,
samplerate=parameters.TARGET_SAMPLERATE_HZ,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
)
assert spectrogram.shape[-1] == expected_width
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_pad_audio_without_fixed_size(duration: float):
# Test the pad_audio function
# This function is used to pad audio with zeros to a specific length
# It is used in the generate_spectrogram function
# The function is tested with a simplepas
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
# pad the audio to be divisible by divide factor
padded_audio = audio_utils.pad_audio(
audio,
samplerate=samplerate,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
divide_factor=params["spec_divide_factor"],
)
# check that the padded audio is divisible by the divide factor
expected_width = audio_utils.compute_spectrogram_width(
len(padded_audio),
samplerate=parameters.TARGET_SAMPLERATE_HZ,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
)
assert expected_width % params["spec_divide_factor"] == 0
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_computed_spectrograms_are_actually_divisible_by_the_spec_divide_factor(
duration: float,
):
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
_, spectrogram, _ = detector_utils.compute_spectrogram(
audio,
samplerate,
params,
torch.device("cpu"),
)
assert spectrogram.shape[-1] % params["spec_divide_factor"] == 0
@given(
duration=st.floats(min_value=0.1, max_value=2),
width=st.integers(min_value=128, max_value=1024),
)
def test_pad_audio_with_fixed_width(duration: float, width: int):
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
# pad the audio to be divisible by divide factor
padded_audio = audio_utils.pad_audio(
audio,
samplerate=samplerate,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
divide_factor=params["spec_divide_factor"],
fixed_width=width,
)
# check that the padded audio is divisible by the divide factor
expected_width = audio_utils.compute_spectrogram_width(
len(padded_audio),
samplerate=parameters.TARGET_SAMPLERATE_HZ,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
)
assert expected_width == width
def test_load_audio_using_bytesio():
basename = "20230322_172000_selec2.wav"
path = os.path.join(DATA_DIR, basename)
with open(path, "rb") as f:
data = io.BytesIO(f.read())
sample_rate, audio_data, file_sample_rate = audio_utils.load_audio_and_samplerate(data, time_exp_fact=1, target_samp_rate=parameters.TARGET_SAMPLERATE_HZ)
expected_sample_rate, expected_audio_data, exp_file_sample_rate = audio_utils.load_audio_and_samplerate(path, time_exp_fact=1, target_samp_rate=parameters.TARGET_SAMPLERATE_HZ)
assert expected_sample_rate == sample_rate
assert exp_file_sample_rate == file_sample_rate
assert np.array_equal(audio_data, expected_audio_data)

View File

@ -1,26 +1,20 @@
"""Test the command line interface."""
from pathlib import Path
import pandas as pd
from click.testing import CliRunner
from batdetect2.cli import cli
runner = CliRunner()
def test_cli_base_command():
"""Test the base command."""
runner = CliRunner()
result = runner.invoke(cli, ["--help"])
assert result.exit_code == 0
assert (
"BatDetect2 - Bat Call Detection and Classification" in result.output
)
assert "BatDetect2 - Bat Call Detection and Classification" in result.output
def test_cli_detect_command_help():
"""Test the detect command help."""
runner = CliRunner()
result = runner.invoke(cli, ["detect", "--help"])
assert result.exit_code == 0
assert "Detect bat calls in files in AUDIO_DIR" in result.output
@ -34,6 +28,7 @@ def test_cli_detect_command_on_test_audio(tmp_path):
if results_dir.exists():
results_dir.rmdir()
runner = CliRunner()
result = runner.invoke(
cli,
[
@ -47,112 +42,3 @@ def test_cli_detect_command_on_test_audio(tmp_path):
assert results_dir.exists()
assert len(list(results_dir.glob("*.csv"))) == 3
assert len(list(results_dir.glob("*.json"))) == 3
def test_cli_detect_command_with_non_trivial_time_expansion(tmp_path):
"""Test the detect command with a non-trivial time expansion factor."""
results_dir = tmp_path / "results"
# Remove results dir if it exists
if results_dir.exists():
results_dir.rmdir()
result = runner.invoke(
cli,
[
"detect",
"example_data/audio",
str(results_dir),
"0.3",
"--time_expansion_factor",
"10",
],
)
assert result.exit_code == 0
assert "Time Expansion Factor: 10" in result.stdout
def test_cli_detect_command_with_the_spec_feature_flag(tmp_path: Path):
"""Test the detect command with the spec feature flag."""
results_dir = tmp_path / "results"
# Remove results dir if it exists
if results_dir.exists():
results_dir.rmdir()
result = runner.invoke(
cli,
[
"detect",
"example_data/audio",
str(results_dir),
"0.3",
"--spec_features",
],
)
assert result.exit_code == 0
assert results_dir.exists()
csv_files = [path.name for path in results_dir.glob("*.csv")]
expected_files = [
"20170701_213954-MYOMYS-LR_0_0.5.wav_spec_features.csv",
"20180530_213516-EPTSER-LR_0_0.5.wav_spec_features.csv",
"20180627_215323-RHIFER-LR_0_0.5.wav_spec_features.csv",
]
for expected_file in expected_files:
assert expected_file in csv_files
df = pd.read_csv(results_dir / expected_file)
assert not (df.duration == -1).any()
def test_cli_detect_fails_gracefully_on_empty_file(tmp_path: Path):
results_dir = tmp_path / "results"
target = tmp_path / "audio"
target.mkdir()
# Create an empty file with the .wav extension
empty_file = target / "empty.wav"
empty_file.touch()
result = runner.invoke(
cli,
args=[
"detect",
str(target),
str(results_dir),
"0.3",
"--spec_features",
],
)
assert result.exit_code == 0
assert f"Error processing file {empty_file}" in result.output
def test_can_set_chunk_size(tmp_path: Path):
results_dir = tmp_path / "results"
# Remove results dir if it exists
if results_dir.exists():
results_dir.rmdir()
result = runner.invoke(
cli,
[
"detect",
"example_data/audio",
str(results_dir),
"0.3",
"--chunk_size",
"1",
],
)
assert "Chunk Size: 1.0s" in result.output
assert result.exit_code == 0
assert results_dir.exists()
assert len(list(results_dir.glob("*.csv"))) == 3
assert len(list(results_dir.glob("*.json"))) == 3

View File

@ -1,73 +0,0 @@
"""Test suite to ensure user provided files are correctly processed."""
from pathlib import Path
from click.testing import CliRunner
from batdetect2.cli import cli
runner = CliRunner()
def test_can_process_jeff37_files(
contrib_dir: Path,
tmp_path: Path,
):
"""This test stems from issue #31.
A user provided a set of files which which batdetect2 cli failed and
generated the following error message:
[2272] "Error processing file!: negative dimensions are not allowed"
This test ensures that the error message is not generated when running
batdetect2 cli with the same set of files.
"""
path = contrib_dir / "jeff37"
assert path.exists()
results_dir = tmp_path / "results"
result = runner.invoke(
cli,
[
"detect",
str(path),
str(results_dir),
"0.3",
],
)
assert result.exit_code == 0
assert results_dir.exists()
assert len(list(results_dir.glob("*.csv"))) == 5
assert len(list(results_dir.glob("*.json"))) == 5
def test_can_process_padpadpadpad_files(
contrib_dir: Path,
tmp_path: Path,
):
"""This test stems from issue #29.
Batdetect2 cli failed on the files provided by the user @padpadpadpad
with the following error message:
AttributeError: module 'numpy' has no attribute 'AxisError'
This test ensures that the files are processed without any error.
"""
path = contrib_dir / "padpadpadpad"
assert path.exists()
results_dir = tmp_path / "results"
result = runner.invoke(
cli,
[
"detect",
str(path),
str(results_dir),
"0.3",
],
)
assert result.exit_code == 0
assert results_dir.exists()
assert len(list(results_dir.glob("*.csv"))) == 2
assert len(list(results_dir.glob("*.json"))) == 2

View File

@ -1,23 +0,0 @@
"""Test suite to ensure that model detections are not incorrect."""
import os
from batdetect2 import api
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
def test_no_detections_above_nyquist():
"""Test that no detections are made above the nyquist frequency."""
# Recording donated by @@kdarras
path = os.path.join(DATA_DIR, "20230322_172000_selec2.wav")
# This recording has a sampling rate of 192 kHz
nyquist = 192_000 / 2
output = api.process_file(path)
predictions = output["pred_dict"]
assert len(predictions["annotation"]) != 0
assert all(
pred["high_freq"] < nyquist for pred in predictions["annotation"]
)

View File

@ -1,291 +0,0 @@
"""Test suite for feature extraction functions."""
import logging
import librosa
import numpy as np
import pytest
import batdetect2.detector.compute_features as feats
from batdetect2 import api, types
from batdetect2.utils import audio_utils as au
numba_logger = logging.getLogger("numba")
numba_logger.setLevel(logging.WARNING)
def index_to_freq(
index: int,
spec_height: int,
min_freq: int,
max_freq: int,
) -> float:
"""Convert spectrogram index to frequency in Hz."""
index = spec_height - index
return round(
(index / float(spec_height)) * (max_freq - min_freq) + min_freq, 2
)
def index_to_time(
index: int,
spec_width: int,
spec_duration: float,
) -> float:
"""Convert spectrogram index to time in seconds."""
return round((index / float(spec_width)) * spec_duration, 2)
def test_get_feats_function_with_empty_spectrogram():
"""Test get_feats function with empty spectrogram.
This tests that the overall flow of the function works, even if the
spectrogram is empty.
"""
spec_duration = 3
spec_width = 100
spec_height = 100
min_freq = 10_000
max_freq = 120_000
spectrogram = np.zeros((spec_height, spec_width))
x_pos = 20
y_pos = 80
bb_width = 20
bb_height = 20
start_time = index_to_time(x_pos, spec_width, spec_duration)
end_time = index_to_time(x_pos + bb_width, spec_width, spec_duration)
low_freq = index_to_freq(y_pos, spec_height, min_freq, max_freq)
high_freq = index_to_freq(
y_pos - bb_height, spec_height, min_freq, max_freq
)
pred_nms: types.PredictionResults = {
"det_probs": np.array([1]),
"class_probs": np.array([[1]]),
"x_pos": np.array([x_pos]),
"y_pos": np.array([y_pos]),
"bb_width": np.array([bb_width]),
"bb_height": np.array([bb_height]),
"start_times": np.array([start_time]),
"end_times": np.array([end_time]),
"low_freqs": np.array([low_freq]),
"high_freqs": np.array([high_freq]),
}
params: types.FeatureExtractionParameters = {
"min_freq": min_freq,
"max_freq": max_freq,
}
features = feats.get_feats(spectrogram, pred_nms, params)
assert low_freq < high_freq
assert isinstance(features, np.ndarray)
assert features.shape == (len(pred_nms["det_probs"]), 9)
assert np.isclose(
features[0],
np.array(
[
end_time - start_time,
low_freq,
high_freq,
high_freq - low_freq,
high_freq,
max_freq,
max_freq,
max_freq,
np.nan,
]
),
equal_nan=True,
).all()
@pytest.mark.parametrize(
"max_power",
[
30_000,
31_000,
32_000,
33_000,
34_000,
35_000,
36_000,
37_000,
38_000,
39_000,
40_000,
],
)
def test_compute_max_power_bb(max_power: int):
"""Test compute_max_power_bb function."""
duration = 1
samplerate = 256_000
min_freq = 0
max_freq = 128_000
start_time = 0.3
end_time = 0.6
low_freq = 30_000
high_freq = 40_000
audio = np.zeros((int(duration * samplerate),))
# Add a signal during the time and frequency range of interest
audio[
int(start_time * samplerate) : int(end_time * samplerate)
] = 0.5 * librosa.tone(
max_power, sr=samplerate, duration=end_time - start_time
)
# Add a more powerful signal outside frequency range of interest
audio[
int(start_time * samplerate) : int(end_time * samplerate)
] += 2 * librosa.tone(
80_000, sr=samplerate, duration=end_time - start_time
)
params = api.get_config(
min_freq=min_freq,
max_freq=max_freq,
target_samp_rate=samplerate,
)
spec, _ = au.generate_spectrogram(
audio,
samplerate,
params,
)
x_start = int(
au.time_to_x_coords(
start_time,
samplerate,
params["fft_win_length"],
params["fft_overlap"],
)
)
x_end = int(
au.time_to_x_coords(
end_time,
samplerate,
params["fft_win_length"],
params["fft_overlap"],
)
)
num_freq_bins = spec.shape[0]
y_low = num_freq_bins - int(num_freq_bins * low_freq / max_freq)
y_high = num_freq_bins - int(num_freq_bins * high_freq / max_freq)
prediction: types.Prediction = {
"det_prob": 1,
"class_prob": np.ones((1,)),
"x_pos": x_start,
"y_pos": int(y_low),
"bb_width": int(x_end - x_start),
"bb_height": int(y_low - y_high),
"start_time": start_time,
"end_time": end_time,
"low_freq": low_freq,
"high_freq": high_freq,
}
print(prediction)
max_power_bb = feats.compute_max_power_bb(
prediction,
spec,
min_freq=min_freq,
max_freq=max_freq,
)
assert abs(max_power_bb - max_power) <= 500
def test_compute_max_power():
"""Test compute_max_power_bb function."""
duration = 3
samplerate = 16_000
min_freq = 0
max_freq = 8_000
start_time = 1
end_time = 2
low_freq = 3_000
high_freq = 4_000
max_power = 5_000
audio = np.zeros((int(duration * samplerate),))
# Add a signal during the time and frequency range of interest
audio[
int(start_time * samplerate) : int(end_time * samplerate)
] = 0.5 * librosa.tone(
3_500, sr=samplerate, duration=end_time - start_time
)
# Add a more powerful signal outside frequency range of interest
audio[
int(start_time * samplerate) : int(end_time * samplerate)
] += 2 * librosa.tone(
max_power, sr=samplerate, duration=end_time - start_time
)
params = api.get_config(
min_freq=min_freq,
max_freq=max_freq,
target_samp_rate=samplerate,
)
spec, _ = au.generate_spectrogram(
audio,
samplerate,
params,
)
x_start = int(
au.time_to_x_coords(
start_time,
samplerate,
params["fft_win_length"],
params["fft_overlap"],
)
)
x_end = int(
au.time_to_x_coords(
end_time,
samplerate,
params["fft_win_length"],
params["fft_overlap"],
)
)
num_freq_bins = spec.shape[0]
y_low = int(num_freq_bins * low_freq / max_freq)
y_high = int(num_freq_bins * high_freq / max_freq)
prediction: types.Prediction = {
"det_prob": 1,
"class_prob": np.ones((1,)),
"x_pos": x_start,
"y_pos": int(y_high),
"bb_width": int(x_end - x_start),
"bb_height": int(y_high - y_low),
"start_time": start_time,
"end_time": end_time,
"low_freq": low_freq,
"high_freq": high_freq,
}
computed_max_power = feats.compute_max_power(
prediction,
spec,
min_freq=min_freq,
max_freq=max_freq,
)
assert abs(computed_max_power - max_power) < 100

View File

@ -1,78 +0,0 @@
"""Test suite for model functions."""
import warnings
from pathlib import Path
from typing import List
import numpy as np
from hypothesis import given, settings
from hypothesis import strategies as st
from batdetect2 import api
from batdetect2.detector import parameters
def test_can_import_model_without_warnings():
with warnings.catch_warnings():
warnings.simplefilter("error")
api.load_model()
@settings(deadline=None, max_examples=5)
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_can_import_model_without_pickle(duration: float):
# NOTE: remove this test once no other issues are found This is a temporary
# test to check that change in model loading did not impact model behaviour
# in any way.
samplerate = parameters.TARGET_SAMPLERATE_HZ
audio = np.random.rand(int(duration * samplerate))
model_without_pickle, model_params_without_pickle = api.load_model(
weights_only=True
)
model_with_pickle, model_params_with_pickle = api.load_model(
weights_only=False
)
assert model_params_without_pickle == model_params_with_pickle
predictions_without_pickle, _, _ = api.process_audio(
audio,
model=model_without_pickle,
)
predictions_with_pickle, _, _ = api.process_audio(
audio,
model=model_with_pickle,
)
assert predictions_without_pickle == predictions_with_pickle
def test_can_import_model_without_pickle_on_test_data(
example_audio_files: List[Path],
):
# NOTE: remove this test once no other issues are found This is a temporary
# test to check that change in model loading did not impact model behaviour
# in any way.
model_without_pickle, model_params_without_pickle = api.load_model(
weights_only=True
)
model_with_pickle, model_params_with_pickle = api.load_model(
weights_only=False
)
assert model_params_without_pickle == model_params_with_pickle
for audio_file in example_audio_files:
audio = api.load_audio(str(audio_file))
predictions_without_pickle, _, _ = api.process_audio(
audio,
model=model_without_pickle,
)
predictions_with_pickle, _, _ = api.process_audio(
audio,
model=model_with_pickle,
)
assert predictions_without_pickle == predictions_with_pickle

1548
uv.lock generated

File diff suppressed because it is too large Load Diff