Compare commits

..

No commits in common. "main" and "v1.0.7" have entirely different histories.
main ... v1.0.7

29 changed files with 1541 additions and 2430 deletions

View File

@ -1,8 +0,0 @@
[bumpversion]
current_version = 1.3.0
commit = True
tag = True
[bumpversion:file:batdetect2/__init__.py]
[bumpversion:file:pyproject.toml]

View File

@ -1,3 +1,6 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
name: Python package
on:
@ -8,22 +11,24 @@ on:
jobs:
build:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.9", "3.10", "3.11", "3.12"]
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v3
with:
enable-cache: true
cache-dependency-glob: "uv.lock"
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
run: uv python install ${{ matrix.python-version }}
- name: Install the project
run: uv sync --all-extras --dev
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install pytest
pip install .
- name: Test with pytest
run: uv run pytest
run: |
pytest

View File

@ -1,3 +1,11 @@
# This workflow will upload a Python Package using Twine when a release is created
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
name: Upload Python Package
on:
@ -9,14 +17,15 @@ permissions:
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v3
with:
python-version: "3.x"
python-version: '3.x'
- name: Install dependencies
run: |
python -m pip install --upgrade pip

6
.gitignore vendored
View File

@ -103,10 +103,10 @@ experiments/*
.ipynb_checkpoints
*.ipynb
# Bump2version
.bumpversion.cfg
# DO Include
!batdetect2_notebook.ipynb
!batdetect2/models/*.pth.tar
!tests/data/*.wav
!tests/data/**/*.wav
notebooks/lightning_logs
example_data/preprocessed

View File

@ -96,27 +96,6 @@ detections, features = api.process_spectrogram(spec)
You can integrate the detections or the extracted features to your custom analysis pipeline.
#### Using the Python API with HTTP
```python
from batdetect2 import api
import io
import requests
AUDIO_URL = "<insert your audio url here>"
# Process a whole file from a url
results = api.process_url(AUDIO_URL)
# Or, load audio and compute spectrograms
# 'requests.get(AUDIO_URL).content' fetches the raw bytes. You are free to use other sources to fetch the raw bytes
audio = api.load_audio(io.BytesIO(requests.get(AUDIO_URL).content))
spec = api.generate_spectrogram(audio)
# And process the audio or the spectrogram with the model
detections, features, spec = api.process_audio(audio)
detections, features = api.process_spectrogram(spec)
```
## Training the model on your own data
Take a look at the steps outlined in finetuning readme [here](batdetect2/finetune/readme.md) for a description of how to train your own model.

View File

@ -1,6 +1 @@
import logging
numba_logger = logging.getLogger("numba")
numba_logger.setLevel(logging.WARNING)
__version__ = "1.3.0"
__version__ = '1.0.7'

View File

@ -97,9 +97,8 @@ consult the API documentation in the code.
"""
import warnings
from typing import List, Optional, Tuple, BinaryIO, Any, Union
from typing import List, Optional, Tuple
from .types import AudioPath
import numpy as np
import torch
@ -121,12 +120,6 @@ from batdetect2.types import (
)
from batdetect2.utils.detector_utils import list_audio_files, load_model
import audioread
import os
import soundfile as sf
import requests
import io
# Remove warnings from torch
warnings.filterwarnings("ignore", category=UserWarning, module="torch")
@ -245,82 +238,34 @@ def generate_spectrogram(
def process_file(
path: AudioPath,
audio_file: str,
model: DetectionModel = MODEL,
config: Optional[ProcessingConfiguration] = None,
device: torch.device = DEVICE,
file_id: Optional[str] = None
) -> du.RunResults:
"""Process audio file with model.
Parameters
----------
path : AudioPath
Path to audio data.
audio_file : str
Path to audio file.
model : DetectionModel, optional
Detection model. Uses default model if not specified.
config : Optional[ProcessingConfiguration], optional
Processing configuration, by default None (uses default parameters).
device : torch.device, optional
Device to use, by default tries to use GPU if available.
file_id: Optional[str],
Give the data an id. If path is a string path to a file this can be ignored and
the file_id will be the basename of the file.
"""
if config is None:
config = CONFIG
return du.process_file(
path,
audio_file,
model,
config,
device,
file_id
)
def process_url(
url: str,
model: DetectionModel = MODEL,
config: Optional[ProcessingConfiguration] = None,
device: torch.device = DEVICE,
file_id: Optional[str] = None
) -> du.RunResults:
"""Process audio file with model.
Parameters
----------
url : str
HTTP URL to load the audio data from
model : DetectionModel, optional
Detection model. Uses default model if not specified.
config : Optional[ProcessingConfiguration], optional
Processing configuration, by default None (uses default parameters).
device : torch.device, optional
Device to use, by default tries to use GPU if available.
file_id: Optional[str],
Give the data an id. Defaults to the URL
"""
if config is None:
config = CONFIG
if file_id is None:
file_id = url
response = requests.get(url)
# Raise exception on HTTP error
response.raise_for_status()
# Retrieve body as raw bytes
raw_audio_data = response.content
return du.process_file(
io.BytesIO(raw_audio_data),
model,
config,
device,
file_id
)
def process_spectrogram(
spec: torch.Tensor,

View File

@ -1,5 +1,4 @@
"""BatDetect2 command line interface."""
import os
import click
@ -45,12 +44,6 @@ def cli():
default=False,
help="Extracts CNN call features",
)
@click.option(
"--chunk_size",
type=float,
default=2,
help="Specifies the duration of chunks in seconds. BatDetect2 will divide longer files into smaller chunks and process them independently. Larger chunks increase computation time and memory usage but may provide more contextual information for inference.",
)
@click.option(
"--spec_features",
is_flag=True,
@ -86,7 +79,6 @@ def detect(
ann_dir: str,
detection_threshold: float,
time_expansion_factor: int,
chunk_size: float,
**args,
):
"""Detect bat calls in files in AUDIO_DIR and save predictions to ANN_DIR.
@ -115,7 +107,7 @@ def detect(
**args,
"time_expansion": time_expansion_factor,
"spec_slices": False,
"chunk_size": chunk_size,
"chunk_size": 2,
"detection_threshold": detection_threshold,
}
)
@ -137,9 +129,10 @@ def detect(
):
results_path = audio_file.replace(audio_dir, ann_dir)
save_results_to_file(results, results_path)
except (RuntimeError, ValueError, LookupError, EOFError) as err:
except (RuntimeError, ValueError, LookupError) as err:
error_files.append(audio_file)
click.secho(f"Error processing file {audio_file}: {err}", fg="red")
click.secho(f"Error processing file!: {err}", fg="red")
raise err
click.echo(f"\nResults saved to: {ann_dir}")
@ -154,7 +147,6 @@ def print_config(config: ProcessingConfiguration):
click.echo("\nProcessing Configuration:")
click.echo(f"Time Expansion Factor: {config.get('time_expansion')}")
click.echo(f"Detection Threshold: {config.get('detection_threshold')}")
click.echo(f"Chunk Size: {config.get('chunk_size')}s")
if __name__ == "__main__":

View File

@ -1,5 +1,7 @@
import glob
import json
import os
import random
import numpy as np

View File

@ -1,10 +1,5 @@
"""Types used in the code base."""
from typing import List, NamedTuple, Optional, Union, Any, BinaryIO
import audioread
import os
import soundfile as sf
from typing import List, NamedTuple, Optional, Union
import numpy as np
import torch
@ -22,7 +17,7 @@ except ImportError:
try:
from typing import NotRequired # type: ignore
from typing import NotRequired
except ImportError:
from typing_extensions import NotRequired
@ -44,9 +39,6 @@ __all__ = [
"SpectrogramParameters",
]
AudioPath = Union[
str, int, os.PathLike[Any], sf.SoundFile, audioread.AudioFile, BinaryIO
]
class SpectrogramParameters(TypedDict):
"""Parameters for generating spectrograms."""

View File

@ -1,67 +1,34 @@
import warnings
from typing import Optional, Tuple, Union, Any, BinaryIO
from ..types import AudioPath
from typing import Optional, Tuple
import librosa
import librosa.core.spectrum
import numpy as np
import torch
import audioread
import os
import soundfile as sf
from batdetect2.detector import parameters
from . import wavfile
__all__ = [
"load_audio",
"load_audio_and_samplerate",
"generate_spectrogram",
"pad_audio",
]
def time_to_x_coords(
time_in_file: float,
samplerate: float = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
) -> float:
nfft = np.floor(window_duration * samplerate) # int() uses floor
noverlap = np.floor(window_overlap * nfft)
return (time_in_file * samplerate - noverlap) / (nfft - noverlap)
def time_to_x_coords(time_in_file, sampling_rate, fft_win_length, fft_overlap):
nfft = np.floor(fft_win_length * sampling_rate) # int() uses floor
noverlap = np.floor(fft_overlap * nfft)
return (time_in_file * sampling_rate - noverlap) / (nfft - noverlap)
def x_coords_to_time(
x_pos: int,
samplerate: float = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
) -> float:
n_fft = np.floor(window_duration * samplerate)
n_overlap = np.floor(window_overlap * n_fft)
n_step = n_fft - n_overlap
return ((x_pos * n_step) + n_overlap) / samplerate
# NOTE this is also defined in post_process
def x_coords_to_time(x_pos, sampling_rate, fft_win_length, fft_overlap):
nfft = np.floor(fft_win_length * sampling_rate)
noverlap = np.floor(fft_overlap * nfft)
return ((x_pos * (nfft - noverlap)) + noverlap) / sampling_rate
# return (1.0 - fft_overlap) * fft_win_length * (x_pos + 0.5) # 0.5 is for center of temporal window
def x_coord_to_sample(
x_pos: int,
samplerate: float = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
resize_factor: float = parameters.RESIZE_FACTOR,
) -> int:
n_fft = np.floor(window_duration * samplerate)
n_overlap = np.floor(window_overlap * n_fft)
n_step = n_fft - n_overlap
x_pos = int(x_pos / resize_factor)
return int((x_pos * n_step) + n_overlap)
def generate_spectrogram(
audio,
sampling_rate,
@ -147,8 +114,9 @@ def generate_spectrogram(
return spec, spec_for_viz
def load_audio(
path: AudioPath,
audio_file: str,
time_exp_fact: float,
target_samp_rate: int,
scale: bool = False,
@ -160,7 +128,7 @@ def load_audio(
Only mono files are supported.
Args:
path (string, int, pathlib.Path, soundfile.SoundFile, audioread object, or file-like object): path to the input file.
audio_file (str): Path to the audio file.
target_samp_rate (int): Target sampling rate.
scale (bool): Whether to scale the audio to [-1, 1].
max_duration (float): Maximum duration of the audio in seconds.
@ -172,42 +140,12 @@ def load_audio(
Raises:
ValueError: If the audio file is stereo.
"""
sample_rate, audio_data, _ = load_audio_and_samplerate(path, time_exp_fact, target_samp_rate, scale, max_duration)
return sample_rate, audio_data
def load_audio_and_samplerate(
path: AudioPath,
time_exp_fact: float,
target_samp_rate: int,
scale: bool = False,
max_duration: Optional[float] = None,
) -> Tuple[int, np.ndarray, Union[float, int]]:
"""Load an audio file and resample it to the target sampling rate.
The audio is also scaled to [-1, 1] and clipped to the maximum duration.
Only mono files are supported.
Args:
path (string, int, pathlib.Path, soundfile.SoundFile, audioread object, or file-like object): path to the input file.
target_samp_rate (int): Target sampling rate.
scale (bool): Whether to scale the audio to [-1, 1].
max_duration (float): Maximum duration of the audio in seconds.
Returns:
sampling_rate: The sampling rate of the audio.
audio_raw: The audio signal in a numpy array.
file_sampling_rate: The original sampling rate of the audio
Raises:
ValueError: If the audio file is stereo.
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=wavfile.WavFileWarning)
# sampling_rate, audio_raw = wavfile.read(audio_file)
audio_raw, file_sampling_rate = librosa.load(
path,
audio_raw, sampling_rate = librosa.load(
audio_file,
sr=None,
dtype=np.float32,
)
@ -215,7 +153,7 @@ def load_audio_and_samplerate(
if len(audio_raw.shape) > 1:
raise ValueError("Currently does not handle stereo files")
sampling_rate = file_sampling_rate * time_exp_fact
sampling_rate = sampling_rate * time_exp_fact
# resample - need to do this after correcting for time expansion
sampling_rate_old = sampling_rate
@ -243,121 +181,58 @@ def load_audio_and_samplerate(
audio_raw = audio_raw - audio_raw.mean()
audio_raw = audio_raw / (np.abs(audio_raw).max() + 10e-6)
return sampling_rate, audio_raw, file_sampling_rate
def compute_spectrogram_width(
length: int,
samplerate: int = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
resize_factor: float = parameters.RESIZE_FACTOR,
) -> int:
n_fft = int(window_duration * samplerate)
n_overlap = int(window_overlap * n_fft)
n_step = n_fft - n_overlap
width = (length - n_overlap) // n_step
return int(width * resize_factor)
return sampling_rate, audio_raw
def pad_audio(
audio: np.ndarray,
samplerate: int = parameters.TARGET_SAMPLERATE_HZ,
window_duration: float = parameters.FFT_WIN_LENGTH_S,
window_overlap: float = parameters.FFT_OVERLAP,
resize_factor: float = parameters.RESIZE_FACTOR,
divide_factor: int = parameters.SPEC_DIVIDE_FACTOR,
fixed_width: Optional[int] = None,
audio_raw,
fs,
ms,
overlap_perc,
resize_factor,
divide_factor,
fixed_width=None,
):
"""Pad audio to be evenly divisible by `divide_factor`.
# Adds zeros to the end of the raw data so that the generated sepctrogram
# will be evenly divisible by `divide_factor`
# Also deals with very short audio clips and fixed_width during training
This function pads the audio signal with zeros to ensure that the
generated spectrogram length will be evenly divisible by `divide_factor`.
This is important for the model to work correctly.
# This code could be clearer, clean up
nfft = int(ms * fs)
noverlap = int(overlap_perc * nfft)
step = nfft - noverlap
min_size = int(divide_factor * (1.0 / resize_factor))
spec_width = (audio_raw.shape[0] - noverlap) // step
spec_width_rs = spec_width * resize_factor
This `divide_factor` comes from the model architecture as it downscales
the spectrogram by this factor, so the input must be divisible by this
integer number.
Parameters
----------
audio : np.ndarray
The audio signal.
samplerate : int
The sampling rate of the audio signal.
window_size : float
The window size in seconds used for the spectrogram computation.
window_overlap : float
The overlap between windows in the spectrogram computation.
resize_factor : float
This factor is used to resize the spectrogram after the STFT
computation. Default is 0.5 which means that the spectrogram will be
reduced by half. Important to take into account for the final size of
the spectrogram.
divide_factor : int
The factor by which the spectrogram will be divided.
fixed_width : int, optional
If provided, the audio will be padded or cut so that the resulting
spectrogram width will be equal to this value.
Returns
-------
np.ndarray
The padded audio signal.
"""
spec_width = compute_spectrogram_width(
audio.shape[0],
samplerate=samplerate,
window_duration=window_duration,
window_overlap=window_overlap,
resize_factor=resize_factor,
if fixed_width is not None and spec_width < fixed_width:
# too small
# used during training to ensure all the batches are the same size
diff = fixed_width * step + noverlap - audio_raw.shape[0]
audio_raw = np.hstack(
(audio_raw, np.zeros(diff, dtype=audio_raw.dtype))
)
if fixed_width:
target_samples = x_coord_to_sample(
fixed_width,
samplerate=samplerate,
window_duration=window_duration,
window_overlap=window_overlap,
resize_factor=resize_factor,
)
elif fixed_width is not None and spec_width > fixed_width:
# too big
# used during training to ensure all the batches are the same size
diff = fixed_width * step + noverlap - audio_raw.shape[0]
audio_raw = audio_raw[:diff]
if spec_width < fixed_width:
elif (
spec_width_rs < min_size
or (np.floor(spec_width_rs) % divide_factor) != 0
):
# need to be at least min_size
diff = target_samples - audio.shape[0]
return np.hstack((audio, np.zeros(diff, dtype=audio.dtype)))
if spec_width > fixed_width:
return audio[:target_samples]
return audio
min_width = int(divide_factor / resize_factor)
if spec_width < min_width:
target_samples = x_coord_to_sample(
min_width,
samplerate=samplerate,
window_duration=window_duration,
window_overlap=window_overlap,
resize_factor=resize_factor,
div_amt = np.ceil(spec_width_rs / float(divide_factor))
div_amt = np.maximum(1, div_amt)
target_size = int(div_amt * divide_factor * (1.0 / resize_factor))
diff = target_size * step + noverlap - audio_raw.shape[0]
audio_raw = np.hstack(
(audio_raw, np.zeros(diff, dtype=audio_raw.dtype))
)
diff = target_samples - audio.shape[0]
return np.hstack((audio, np.zeros(diff, dtype=audio.dtype)))
if (spec_width % divide_factor) == 0:
return audio
target_width = int(np.ceil(spec_width / divide_factor)) * divide_factor
target_samples = x_coord_to_sample(
target_width,
samplerate=samplerate,
window_duration=window_duration,
window_overlap=window_overlap,
resize_factor=resize_factor,
)
diff = target_samples - audio.shape[0]
return np.hstack((audio, np.zeros(diff, dtype=audio.dtype)))
return audio_raw
def gen_mag_spectrogram(x, fs, ms, overlap_perc):
@ -372,11 +247,7 @@ def gen_mag_spectrogram(x, fs, ms, overlap_perc):
# compute spec
spec, _ = librosa.core.spectrum._spectrogram(
y=x,
power=1,
n_fft=nfft,
hop_length=step,
center=False,
y=x, power=1, n_fft=nfft, hop_length=step, center=False
)
# remove DC component and flip vertical orientation

View File

@ -1,19 +1,13 @@
import json
import os
from typing import Any, Iterator, List, Optional, Tuple, Union, BinaryIO
from ..types import AudioPath
from typing import Any, Iterator, List, Optional, Tuple, Union
import librosa
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
try:
from numpy.exceptions import AxisError
except ImportError:
from numpy import AxisError # type: ignore
import batdetect2.detector.compute_features as feats
import batdetect2.detector.post_process as pp
import batdetect2.utils.audio_utils as au
@ -32,13 +26,6 @@ from batdetect2.types import (
SpectrogramParameters,
)
import audioread
import os
import io
import soundfile as sf
import hashlib
import uuid
__all__ = [
"load_model",
"list_audio_files",
@ -93,7 +80,6 @@ def load_model(
model_path: str = DEFAULT_MODEL_PATH,
load_weights: bool = True,
device: Optional[torch.device] = None,
weights_only: bool = True,
) -> Tuple[DetectionModel, ModelParameters]:
"""Load model from file.
@ -114,11 +100,7 @@ def load_model(
if not os.path.isfile(model_path):
raise FileNotFoundError("Model file not found.")
net_params = torch.load(
model_path,
map_location=device,
weights_only=weights_only,
)
net_params = torch.load(model_path, map_location=device)
params = net_params["params"]
@ -260,7 +242,7 @@ def format_single_result(
)
class_name = class_names[np.argmax(class_overall)]
annotations = get_annotations_from_preds(predictions, class_names)
except (AxisError, ValueError):
except (np.AxisError, ValueError):
# No detections
class_overall = np.zeros(len(class_names))
class_name = "None"
@ -737,11 +719,10 @@ def process_audio_array(
def process_file(
path: AudioPath,
audio_file: str,
model: DetectionModel,
config: ProcessingConfiguration,
device: torch.device,
file_id: Optional[str] = None
) -> Union[RunResults, Any]:
"""Process a single audio file with detection model.
@ -750,7 +731,7 @@ def process_file(
Parameters
----------
path : AudioPath
audio_file : str
Path to audio file.
model : torch.nn.Module
@ -759,9 +740,6 @@ def process_file(
config : ProcessingConfiguration
Configuration for processing.
file_id: Optional[str],
Give the data an id. Defaults to the filename if path is a string. Otherwise an md5 will be calculated from the binary data.
Returns
-------
results : Results or Any
@ -774,17 +752,19 @@ def process_file(
cnn_feats = []
spec_slices = []
# Get original sampling rate
file_samp_rate = librosa.get_samplerate(audio_file)
orig_samp_rate = file_samp_rate * config.get("time_expansion", 1) or 1
# load audio file
sampling_rate, audio_full, file_samp_rate = au.load_audio_and_samplerate(
path,
sampling_rate, audio_full = au.load_audio(
audio_file,
time_exp_fact=config.get("time_expansion", 1) or 1,
target_samp_rate=config["target_samp_rate"],
scale=config["scale_raw_audio"],
max_duration=config.get("max_duration"),
)
orig_samp_rate = file_samp_rate * (config.get("time_expansion") or 1)
# loop through larger file and split into chunks
# TODO: fix so that it overlaps correctly and takes care of
# duplicate detections at borders
@ -833,13 +813,9 @@ def process_file(
spec_slices,
)
_file_id = file_id
if _file_id is None:
_file_id = _generate_id(path)
# convert results to a dictionary in the right format
results = convert_results(
file_id=_file_id,
file_id=os.path.basename(audio_file),
time_exp=config.get("time_expansion", 1) or 1,
duration=audio_full.shape[0] / float(sampling_rate),
params=config,
@ -859,22 +835,6 @@ def process_file(
return results
def _generate_id(path: AudioPath) -> str:
""" Generate an id based on the path.
If the path is a str or PathLike it will parsed as the basename.
This should ensure backwards compatibility with previous versions.
"""
if isinstance(path, str) or isinstance(path, os.PathLike):
return os.path.basename(path)
elif isinstance(path, (BinaryIO, io.BytesIO)):
path.seek(0)
md5 = hashlib.md5(path.read()).hexdigest()
path.seek(0)
return md5
else:
return str(uuid.uuid4())
def summarize_results(results, predictions, config):
"""Print summary of results."""

1337
pdm.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,24 +1,30 @@
[tool.pdm]
[tool.pdm.dev-dependencies]
dev = [
"pytest>=7.2.2",
]
[project]
name = "batdetect2"
version = "1.3.0"
version = "1.0.7"
description = "Deep learning model for detecting and classifying bat echolocation calls in high frequency audio recordings."
authors = [
{ "name" = "Oisin Mac Aodha", "email" = "oisin.macaodha@ed.ac.uk" },
{ "name" = "Santiago Martinez Balvanera", "email" = "santiago.balvanera.20@ucl.ac.uk" },
{ "name" = "Santiago Martinez Balvanera", "email" = "santiago.balvanera.20@ucl.ac.uk" }
]
dependencies = [
"click>=8.1.7",
"librosa>=0.10.1",
"matplotlib>=3.7.1",
"numpy>=1.23.5",
"pandas>=1.5.3",
"scikit-learn>=1.2.2",
"scipy>=1.10.1",
"torch>=1.13.1,<2.5.0",
"torchaudio>=1.13.1,<2.5.0",
"torchvision>=0.14.0",
"librosa",
"matplotlib",
"numpy",
"pandas",
"scikit-learn",
"scipy",
"torch>=1.13.1,<2",
"torchaudio",
"torchvision",
"click",
]
requires-python = ">=3.9,<3.13"
requires-python = ">=3.8,<3.11"
readme = "README.md"
license = { text = "CC-by-nc-4" }
classifiers = [
@ -26,10 +32,8 @@ classifiers = [
"Intended Audience :: Science/Research",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: Multimedia :: Sound/Audio :: Analysis",
@ -45,38 +49,34 @@ keywords = [
]
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
requires = ["pdm-pep517>=1.0.0"]
build-backend = "pdm.pep517.api"
[project.scripts]
batdetect2 = "batdetect2.cli:cli"
[tool.uv]
dev-dependencies = [
"debugpy>=1.8.8",
"hypothesis>=6.118.7",
"pyright>=1.1.388",
"pytest>=7.2.2",
"ruff>=0.7.3",
]
[tool.ruff]
[tool.black]
line-length = 79
target-version = "py39"
[tool.ruff.format]
docstring-code-format = true
docstring-code-line-length = 79
[[tool.mypy.overrides]]
module = [
"librosa",
"pandas",
]
ignore_missing_imports = true
[tool.ruff.lint]
select = ["E4", "E7", "E9", "F", "B", "Q", "I", "NPY201"]
[tool.pylsp-mypy]
enabled = false
live_mode = true
strict = true
[tool.ruff.lint.pydocstyle]
[tool.pydocstyle]
convention = "numpy"
[tool.pyright]
include = ["batdetect2", "tests"]
include = [
"bat_detect",
"tests",
]
venvPath = "."
venv = ".venv"
pythonVersion = "3.9"
pythonPlatform = "All"

View File

@ -1,40 +0,0 @@
from pathlib import Path
from typing import List
import pytest
@pytest.fixture
def example_data_dir() -> Path:
pkg_dir = Path(__file__).parent.parent
example_data_dir = pkg_dir / "example_data"
assert example_data_dir.exists()
return example_data_dir
@pytest.fixture
def example_audio_dir(example_data_dir: Path) -> Path:
example_audio_dir = example_data_dir / "audio"
assert example_audio_dir.exists()
return example_audio_dir
@pytest.fixture
def example_audio_files(example_audio_dir: Path) -> List[Path]:
audio_files = list(example_audio_dir.glob("*.[wW][aA][vV]"))
assert len(audio_files) == 3
return audio_files
@pytest.fixture
def data_dir() -> Path:
dir = Path(__file__).parent / "data"
assert dir.exists()
return dir
@pytest.fixture
def contrib_dir(data_dir) -> Path:
dir = data_dir / "contrib"
assert dir.exists()
return dir

View File

@ -1,22 +1,21 @@
"""Test bat detect module API."""
from pathlib import Path
import os
from glob import glob
from pathlib import Path
import numpy as np
import soundfile as sf
import torch
from torch import nn
import soundfile as sf
from batdetect2 import api
import io
PKG_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
TEST_DATA_DIR = os.path.join(PKG_DIR, "example_data", "audio")
TEST_DATA = glob(os.path.join(TEST_DATA_DIR, "*.wav"))
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
def test_load_model_with_default_params():
"""Test loading model with default parameters."""
@ -268,6 +267,7 @@ def test_process_file_with_spec_slices():
assert len(results["spec_slices"]) == len(detections)
def test_process_file_with_empty_predictions_does_not_fail(
tmp_path: Path,
):
@ -282,28 +282,3 @@ def test_process_file_with_empty_predictions_does_not_fail(
assert results is not None
assert len(results["pred_dict"]["annotation"]) == 0
def test_process_file_file_id_defaults_to_basename():
"""Test that process_file assigns basename as an id if no file_id is provided."""
# Recording donated by @@kdarras
basename = "20230322_172000_selec2.wav"
path = os.path.join(DATA_DIR, basename)
output = api.process_file(path)
predictions = output["pred_dict"]
id = predictions["id"]
assert id == basename
def test_bytesio_file_id_defaults_to_md5():
"""Test that process_file assigns an md5 sum as an id if no file_id is provided when using binary data."""
# Recording donated by @@kdarras
basename = "20230322_172000_selec2.wav"
path = os.path.join(DATA_DIR, basename)
with open(path, "rb") as f:
data = io.BytesIO(f.read())
output = api.process_file(data)
predictions = output["pred_dict"]
id = predictions["id"]
assert id == "7ade9ebf1a9fe5477ff3a2dc57001929"

View File

@ -1,156 +0,0 @@
import numpy as np
import torch
import torch.nn.functional as F
from hypothesis import given
from hypothesis import strategies as st
from batdetect2.detector import parameters
from batdetect2.utils import audio_utils, detector_utils
import io
import os
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_can_compute_correct_spectrogram_width(duration: float):
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
spectrogram, _ = audio_utils.generate_spectrogram(
audio,
samplerate,
params,
)
# convert to pytorch
spectrogram = torch.from_numpy(spectrogram)
# add batch and channel dimensions
spectrogram = spectrogram.unsqueeze(0).unsqueeze(0)
# resize the spec
resize_factor = params["resize_factor"]
spec_op_shape = (
int(params["spec_height"] * resize_factor),
int(spectrogram.shape[-1] * resize_factor),
)
spectrogram = F.interpolate(
spectrogram,
size=spec_op_shape,
mode="bilinear",
align_corners=False,
)
expected_width = audio_utils.compute_spectrogram_width(
length,
samplerate=parameters.TARGET_SAMPLERATE_HZ,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
)
assert spectrogram.shape[-1] == expected_width
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_pad_audio_without_fixed_size(duration: float):
# Test the pad_audio function
# This function is used to pad audio with zeros to a specific length
# It is used in the generate_spectrogram function
# The function is tested with a simplepas
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
# pad the audio to be divisible by divide factor
padded_audio = audio_utils.pad_audio(
audio,
samplerate=samplerate,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
divide_factor=params["spec_divide_factor"],
)
# check that the padded audio is divisible by the divide factor
expected_width = audio_utils.compute_spectrogram_width(
len(padded_audio),
samplerate=parameters.TARGET_SAMPLERATE_HZ,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
)
assert expected_width % params["spec_divide_factor"] == 0
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_computed_spectrograms_are_actually_divisible_by_the_spec_divide_factor(
duration: float,
):
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
_, spectrogram, _ = detector_utils.compute_spectrogram(
audio,
samplerate,
params,
torch.device("cpu"),
)
assert spectrogram.shape[-1] % params["spec_divide_factor"] == 0
@given(
duration=st.floats(min_value=0.1, max_value=2),
width=st.integers(min_value=128, max_value=1024),
)
def test_pad_audio_with_fixed_width(duration: float, width: int):
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
# pad the audio to be divisible by divide factor
padded_audio = audio_utils.pad_audio(
audio,
samplerate=samplerate,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
divide_factor=params["spec_divide_factor"],
fixed_width=width,
)
# check that the padded audio is divisible by the divide factor
expected_width = audio_utils.compute_spectrogram_width(
len(padded_audio),
samplerate=parameters.TARGET_SAMPLERATE_HZ,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
)
assert expected_width == width
def test_load_audio_using_bytesio():
basename = "20230322_172000_selec2.wav"
path = os.path.join(DATA_DIR, basename)
with open(path, "rb") as f:
data = io.BytesIO(f.read())
sample_rate, audio_data, file_sample_rate = audio_utils.load_audio_and_samplerate(data, time_exp_fact=1, target_samp_rate=parameters.TARGET_SAMPLERATE_HZ)
expected_sample_rate, expected_audio_data, exp_file_sample_rate = audio_utils.load_audio_and_samplerate(path, time_exp_fact=1, target_samp_rate=parameters.TARGET_SAMPLERATE_HZ)
assert expected_sample_rate == sample_rate
assert exp_file_sample_rate == file_sample_rate
assert np.array_equal(audio_data, expected_audio_data)

View File

@ -1,26 +1,22 @@
"""Test the command line interface."""
from pathlib import Path
import pandas as pd
from click.testing import CliRunner
import pandas as pd
from batdetect2.cli import cli
runner = CliRunner()
def test_cli_base_command():
"""Test the base command."""
runner = CliRunner()
result = runner.invoke(cli, ["--help"])
assert result.exit_code == 0
assert (
"BatDetect2 - Bat Call Detection and Classification" in result.output
)
assert "BatDetect2 - Bat Call Detection and Classification" in result.output
def test_cli_detect_command_help():
"""Test the detect command help."""
runner = CliRunner()
result = runner.invoke(cli, ["detect", "--help"])
assert result.exit_code == 0
assert "Detect bat calls in files in AUDIO_DIR" in result.output
@ -34,6 +30,7 @@ def test_cli_detect_command_on_test_audio(tmp_path):
if results_dir.exists():
results_dir.rmdir()
runner = CliRunner()
result = runner.invoke(
cli,
[
@ -57,6 +54,7 @@ def test_cli_detect_command_with_non_trivial_time_expansion(tmp_path):
if results_dir.exists():
results_dir.rmdir()
runner = CliRunner()
result = runner.invoke(
cli,
[
@ -70,7 +68,8 @@ def test_cli_detect_command_with_non_trivial_time_expansion(tmp_path):
)
assert result.exit_code == 0
assert "Time Expansion Factor: 10" in result.stdout
assert 'Time Expansion Factor: 10' in result.stdout
def test_cli_detect_command_with_the_spec_feature_flag(tmp_path: Path):
@ -81,6 +80,7 @@ def test_cli_detect_command_with_the_spec_feature_flag(tmp_path: Path):
if results_dir.exists():
results_dir.rmdir()
runner = CliRunner()
result = runner.invoke(
cli,
[
@ -94,12 +94,13 @@ def test_cli_detect_command_with_the_spec_feature_flag(tmp_path: Path):
assert result.exit_code == 0
assert results_dir.exists()
csv_files = [path.name for path in results_dir.glob("*.csv")]
expected_files = [
"20170701_213954-MYOMYS-LR_0_0.5.wav_spec_features.csv",
"20180530_213516-EPTSER-LR_0_0.5.wav_spec_features.csv",
"20180627_215323-RHIFER-LR_0_0.5.wav_spec_features.csv",
"20180627_215323-RHIFER-LR_0_0.5.wav_spec_features.csv"
]
for expected_file in expected_files:
@ -107,52 +108,3 @@ def test_cli_detect_command_with_the_spec_feature_flag(tmp_path: Path):
df = pd.read_csv(results_dir / expected_file)
assert not (df.duration == -1).any()
def test_cli_detect_fails_gracefully_on_empty_file(tmp_path: Path):
results_dir = tmp_path / "results"
target = tmp_path / "audio"
target.mkdir()
# Create an empty file with the .wav extension
empty_file = target / "empty.wav"
empty_file.touch()
result = runner.invoke(
cli,
args=[
"detect",
str(target),
str(results_dir),
"0.3",
"--spec_features",
],
)
assert result.exit_code == 0
assert f"Error processing file {empty_file}" in result.output
def test_can_set_chunk_size(tmp_path: Path):
results_dir = tmp_path / "results"
# Remove results dir if it exists
if results_dir.exists():
results_dir.rmdir()
result = runner.invoke(
cli,
[
"detect",
"example_data/audio",
str(results_dir),
"0.3",
"--chunk_size",
"1",
],
)
assert "Chunk Size: 1.0s" in result.output
assert result.exit_code == 0
assert results_dir.exists()
assert len(list(results_dir.glob("*.csv"))) == 3
assert len(list(results_dir.glob("*.json"))) == 3

View File

@ -1,73 +0,0 @@
"""Test suite to ensure user provided files are correctly processed."""
from pathlib import Path
from click.testing import CliRunner
from batdetect2.cli import cli
runner = CliRunner()
def test_can_process_jeff37_files(
contrib_dir: Path,
tmp_path: Path,
):
"""This test stems from issue #31.
A user provided a set of files which which batdetect2 cli failed and
generated the following error message:
[2272] "Error processing file!: negative dimensions are not allowed"
This test ensures that the error message is not generated when running
batdetect2 cli with the same set of files.
"""
path = contrib_dir / "jeff37"
assert path.exists()
results_dir = tmp_path / "results"
result = runner.invoke(
cli,
[
"detect",
str(path),
str(results_dir),
"0.3",
],
)
assert result.exit_code == 0
assert results_dir.exists()
assert len(list(results_dir.glob("*.csv"))) == 5
assert len(list(results_dir.glob("*.json"))) == 5
def test_can_process_padpadpadpad_files(
contrib_dir: Path,
tmp_path: Path,
):
"""This test stems from issue #29.
Batdetect2 cli failed on the files provided by the user @padpadpadpad
with the following error message:
AttributeError: module 'numpy' has no attribute 'AxisError'
This test ensures that the files are processed without any error.
"""
path = contrib_dir / "padpadpadpad"
assert path.exists()
results_dir = tmp_path / "results"
result = runner.invoke(
cli,
[
"detect",
str(path),
str(results_dir),
"0.3",
],
)
assert result.exit_code == 0
assert results_dir.exists()
assert len(list(results_dir.glob("*.csv"))) == 2
assert len(list(results_dir.glob("*.json"))) == 2

View File

@ -1,78 +0,0 @@
"""Test suite for model functions."""
import warnings
from pathlib import Path
from typing import List
import numpy as np
from hypothesis import given, settings
from hypothesis import strategies as st
from batdetect2 import api
from batdetect2.detector import parameters
def test_can_import_model_without_warnings():
with warnings.catch_warnings():
warnings.simplefilter("error")
api.load_model()
@settings(deadline=None, max_examples=5)
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_can_import_model_without_pickle(duration: float):
# NOTE: remove this test once no other issues are found This is a temporary
# test to check that change in model loading did not impact model behaviour
# in any way.
samplerate = parameters.TARGET_SAMPLERATE_HZ
audio = np.random.rand(int(duration * samplerate))
model_without_pickle, model_params_without_pickle = api.load_model(
weights_only=True
)
model_with_pickle, model_params_with_pickle = api.load_model(
weights_only=False
)
assert model_params_without_pickle == model_params_with_pickle
predictions_without_pickle, _, _ = api.process_audio(
audio,
model=model_without_pickle,
)
predictions_with_pickle, _, _ = api.process_audio(
audio,
model=model_with_pickle,
)
assert predictions_without_pickle == predictions_with_pickle
def test_can_import_model_without_pickle_on_test_data(
example_audio_files: List[Path],
):
# NOTE: remove this test once no other issues are found This is a temporary
# test to check that change in model loading did not impact model behaviour
# in any way.
model_without_pickle, model_params_without_pickle = api.load_model(
weights_only=True
)
model_with_pickle, model_params_with_pickle = api.load_model(
weights_only=False
)
assert model_params_without_pickle == model_params_with_pickle
for audio_file in example_audio_files:
audio = api.load_audio(str(audio_file))
predictions_without_pickle, _, _ = api.process_audio(
audio,
model=model_without_pickle,
)
predictions_with_pickle, _, _ = api.process_audio(
audio,
model=model_with_pickle,
)
assert predictions_without_pickle == predictions_with_pickle

1548
uv.lock generated

File diff suppressed because it is too large Load Diff