batdetect2/tests/test_audio_utils.py
2024-11-16 18:23:43 +00:00

137 lines
4.3 KiB
Python

import numpy as np
import torch
import torch.nn.functional as F
from hypothesis import given
from hypothesis import strategies as st
from batdetect2.detector import parameters
from batdetect2.utils import audio_utils, detector_utils
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_can_compute_correct_spectrogram_width(duration: float):
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
spectrogram, _ = audio_utils.generate_spectrogram(
audio,
samplerate,
params,
)
# convert to pytorch
spectrogram = torch.from_numpy(spectrogram)
# add batch and channel dimensions
spectrogram = spectrogram.unsqueeze(0).unsqueeze(0)
# resize the spec
resize_factor = params["resize_factor"]
spec_op_shape = (
int(params["spec_height"] * resize_factor),
int(spectrogram.shape[-1] * resize_factor),
)
spectrogram = F.interpolate(
spectrogram,
size=spec_op_shape,
mode="bilinear",
align_corners=False,
)
expected_width = audio_utils.compute_spectrogram_width(
length,
samplerate=parameters.TARGET_SAMPLERATE_HZ,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
)
assert spectrogram.shape[-1] == expected_width
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_pad_audio_without_fixed_size(duration: float):
# Test the pad_audio function
# This function is used to pad audio with zeros to a specific length
# It is used in the generate_spectrogram function
# The function is tested with a simplepas
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
# pad the audio to be divisible by divide factor
padded_audio = audio_utils.pad_audio(
audio,
samplerate=samplerate,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
divide_factor=params["spec_divide_factor"],
)
# check that the padded audio is divisible by the divide factor
expected_width = audio_utils.compute_spectrogram_width(
len(padded_audio),
samplerate=parameters.TARGET_SAMPLERATE_HZ,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
)
assert expected_width % params["spec_divide_factor"] == 0
@given(duration=st.floats(min_value=0.1, max_value=2))
def test_computed_spectrograms_are_actually_divisible_by_the_spec_divide_factor(
duration: float,
):
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
_, spectrogram = detector_utils.compute_spectrogram(
audio,
samplerate,
params,
torch.device("cpu"),
)
assert spectrogram.shape[-1] % params["spec_divide_factor"] == 0
@given(
duration=st.floats(min_value=0.1, max_value=2),
width=st.integers(min_value=128, max_value=1024),
)
def test_pad_audio_with_fixed_width(duration: float, width: int):
samplerate = parameters.TARGET_SAMPLERATE_HZ
params = parameters.DEFAULT_SPECTROGRAM_PARAMETERS
length = int(duration * samplerate)
audio = np.random.rand(length)
# pad the audio to be divisible by divide factor
padded_audio = audio_utils.pad_audio(
audio,
samplerate=samplerate,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
divide_factor=params["spec_divide_factor"],
fixed_width=width,
)
# check that the padded audio is divisible by the divide factor
expected_width = audio_utils.compute_spectrogram_width(
len(padded_audio),
samplerate=parameters.TARGET_SAMPLERATE_HZ,
window_duration=params["fft_win_length"],
window_overlap=params["fft_overlap"],
resize_factor=params["resize_factor"],
)
assert expected_width == width