batdetect2/bat_detect/utils/visualize.py
2023-01-25 19:17:38 +00:00

246 lines
7.8 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.axes._axes import _log as matplotlib_axes_logger
from sklearn.svm import LinearSVC
matplotlib_axes_logger.setLevel("ERROR")
colors = [
"#e6194B",
"#3cb44b",
"#ffe119",
"#4363d8",
"#f58231",
"#911eb4",
"#42d4f4",
"#f032e6",
"#bfef45",
"#fabebe",
"#469990",
"#e6beff",
"#9A6324",
"#fffac8",
"#800000",
"#aaffc3",
"#808000",
"#ffd8b1",
"#000075",
"#a9a9a9",
]
class InteractivePlotter:
def __init__(
self,
feats_ds,
feats,
spec_slices,
call_info,
freq_lims,
allow_training,
):
"""
Plots 2D low dimensional features on left and corresponding spectgrams on
the right.
"""
self.feats_ds = feats_ds
self.feats = feats
self.clf = None
self.spec_slices = spec_slices
self.call_info = call_info
# _, self.labels = np.unique([cc['class'] for cc in call_info], return_inverse=True)
self.labels = np.zeros(len(call_info), dtype=np.int)
self.annotated = np.zeros(
self.labels.shape[0], dtype=np.int
) # can populate this with 1's where we have labels
self.labels_cols = [
colors[self.labels[ii]] for ii in range(len(self.labels))
]
self.freq_lims = freq_lims
self.allow_training = allow_training
self.pt_size = 5.0
self.spec_pad = (
0.2 # this much padding has been applied to the spec slices
)
self.fig_width = 12
self.fig_height = 8
self.current_id = 0
max_ind = np.argmax([ss.shape[1] for ss in self.spec_slices])
self.max_width = self.spec_slices[max_ind].shape[1]
self.blank_spec = np.zeros(
(self.spec_slices[0].shape[0], self.max_width)
)
def plot(self, fig_id):
self.fig, self.ax = plt.subplots(
nrows=1,
ncols=2,
num=fig_id,
figsize=(self.fig_width, self.fig_height),
gridspec_kw={"width_ratios": [2, 1]},
)
plt.tight_layout()
# plot 2D TNSE features
self.low_dim_plt = self.ax[0].scatter(
self.feats_ds[:, 0],
self.feats_ds[:, 1],
c=self.labels_cols,
s=self.pt_size,
picker=5,
)
self.ax[0].set_title("TSNE of Call Features")
self.ax[0].set_xticks([])
self.ax[0].set_yticks([])
# plot clip from spectrogram
spec_min_max = (
0,
self.blank_spec.shape[1],
self.freq_lims[0],
self.freq_lims[1],
)
self.ax[1].imshow(
self.blank_spec, extent=spec_min_max, cmap="plasma", aspect="auto"
)
self.spec_im = self.ax[1].get_images()[0]
self.ax[1].set_title("Spectrogram")
self.ax[1].grid(color="w", linewidth=0.5)
self.ax[1].set_xticks([])
self.ax[1].set_ylabel("kHz")
bbox_orig = patches.Rectangle(
(0, 0), 0, 0, edgecolor="w", linewidth=0, fill=False
)
self.ax[1].add_patch(bbox_orig)
self.annot = self.ax[0].annotate(
"",
xy=(0, 0),
xytext=(20, 20),
textcoords="offset points",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"),
)
self.annot.set_visible(False)
self.fig.canvas.mpl_connect("motion_notify_event", self.mouse_hover)
self.fig.canvas.mpl_connect("key_press_event", self.key_press)
def mouse_hover(self, event):
vis = self.annot.get_visible()
if event.inaxes == self.ax[0]:
cont, ind = self.low_dim_plt.contains(event)
if cont:
self.current_id = ind["ind"][0]
# copy spec into full window - probably a better way of doing this
new_spec = self.blank_spec.copy()
w_diff = (
self.blank_spec.shape[1]
- self.spec_slices[self.current_id].shape[1]
) // 2
new_spec[
:,
w_diff : self.spec_slices[self.current_id].shape[1]
+ w_diff,
] = self.spec_slices[self.current_id]
self.spec_im.set_data(new_spec)
self.spec_im.set_clim(vmin=0, vmax=new_spec.max())
# draw bounding box around call
self.ax[1].patches[0].remove()
spec_width_orig = self.spec_slices[self.current_id].shape[
1
] / (1.0 + 2.0 * self.spec_pad)
xx = w_diff + self.spec_pad * spec_width_orig
ww = spec_width_orig
yy = self.call_info[self.current_id]["low_freq"] / 1000
hh = (
self.call_info[self.current_id]["high_freq"]
- self.call_info[self.current_id]["low_freq"]
) / 1000
bbox = patches.Rectangle(
(xx, yy), ww, hh, edgecolor="r", linewidth=0.5, fill=False
)
self.ax[1].add_patch(bbox)
# update annotation arrow
pos = self.low_dim_plt.get_offsets()[self.current_id]
self.annot.xy = pos
self.annot.set_visible(True)
# write call info
info_str = (
self.call_info[self.current_id]["file_name"]
+ ", time="
+ str(
round(self.call_info[self.current_id]["start_time"], 3)
)
+ ", prob="
+ str(
round(self.call_info[self.current_id]["det_prob"], 3)
)
)
self.ax[0].set_xlabel(info_str)
# redraw
self.fig.canvas.draw_idle()
def key_press(self, event):
if event.key.isdigit():
self.labels_cols[self.current_id] = colors[int(event.key)]
self.labels[self.current_id] = int(event.key)
self.annotated[self.current_id] = 1
elif event.key == "enter" and self.allow_training:
self.train_classifier()
elif event.key == "x" and self.allow_training:
self.get_classifier_params()
self.ax[0].scatter(
self.feats_ds[:, 0],
self.feats_ds[:, 1],
c=self.labels_cols,
s=self.pt_size,
)
self.fig.canvas.draw_idle()
def train_classifier(self):
# TODO maybe it's better to classify in 2D space - but then can't be linear ...
inds = np.where(self.annotated == 1)[0]
labs_un, labs_inds = np.unique(self.labels[inds], return_inverse=True)
if labs_un.shape[0] > 1: # needs at least 2 classes
self.clf = LinearSVC(
C=1.0,
penalty="l2",
loss="squared_hinge",
tol=0.0001,
intercept_scaling=1.0,
max_iter=2000,
)
self.clf.fit(self.feats[inds, :], self.labels[inds])
# update labels
inds_unlab = np.where(self.annotated == 0)[0]
self.labels[inds_unlab] = self.clf.predict(self.feats[inds_unlab])
for ii in inds_unlab:
self.labels_cols[ii] = colors[self.labels[ii]]
else:
print("Not enough data - please label more classes.")
def get_classifier_params(self):
res = {}
if self.clf is None:
print("Model not trained!")
else:
res["weights"] = self.clf.coef_.astype(np.float32)
res["biases"] = self.clf.intercept_.astype(np.float32)
return res