mirror of
https://github.com/macaodha/batdetect2.git
synced 2025-06-29 22:51:58 +02:00
366 lines
11 KiB
Python
366 lines
11 KiB
Python
import torch
|
|
import torch.fft
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from .model_helpers import (
|
|
ConvBlockDownCoordF,
|
|
ConvBlockDownStandard,
|
|
ConvBlockUpF,
|
|
ConvBlockUpStandard,
|
|
SelfAttention,
|
|
)
|
|
|
|
__all__ = [
|
|
"Net2DFast",
|
|
"Net2DFastNoAttn",
|
|
"Net2DFastNoCoordConv",
|
|
]
|
|
|
|
|
|
class Net2DFast(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_filts,
|
|
num_classes=0,
|
|
emb_dim=0,
|
|
ip_height=128,
|
|
resize_factor=0.5,
|
|
):
|
|
super(Net2DFast, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.emb_dim = emb_dim
|
|
self.num_filts = num_filts
|
|
self.resize_factor = resize_factor
|
|
self.ip_height_rs = ip_height
|
|
self.bneck_height = self.ip_height_rs // 32
|
|
|
|
# encoder
|
|
self.conv_dn_0 = ConvBlockDownCoordF(
|
|
1,
|
|
num_filts // 4,
|
|
self.ip_height_rs,
|
|
k_size=3,
|
|
pad_size=1,
|
|
stride=1,
|
|
)
|
|
self.conv_dn_1 = ConvBlockDownCoordF(
|
|
num_filts // 4,
|
|
num_filts // 2,
|
|
self.ip_height_rs // 2,
|
|
k_size=3,
|
|
pad_size=1,
|
|
stride=1,
|
|
)
|
|
self.conv_dn_2 = ConvBlockDownCoordF(
|
|
num_filts // 2,
|
|
num_filts,
|
|
self.ip_height_rs // 4,
|
|
k_size=3,
|
|
pad_size=1,
|
|
stride=1,
|
|
)
|
|
self.conv_dn_3 = nn.Conv2d(num_filts, num_filts * 2, 3, padding=1)
|
|
self.conv_dn_3_bn = nn.BatchNorm2d(num_filts * 2)
|
|
|
|
# bottleneck
|
|
self.conv_1d = nn.Conv2d(
|
|
num_filts * 2,
|
|
num_filts * 2,
|
|
(self.ip_height_rs // 8, 1),
|
|
padding=0,
|
|
)
|
|
self.conv_1d_bn = nn.BatchNorm2d(num_filts * 2)
|
|
self.att = SelfAttention(num_filts * 2, num_filts * 2)
|
|
|
|
# decoder
|
|
self.conv_up_2 = ConvBlockUpF(
|
|
num_filts * 2, num_filts // 2, self.ip_height_rs // 8
|
|
)
|
|
self.conv_up_3 = ConvBlockUpF(
|
|
num_filts // 2, num_filts // 4, self.ip_height_rs // 4
|
|
)
|
|
self.conv_up_4 = ConvBlockUpF(
|
|
num_filts // 4, num_filts // 4, self.ip_height_rs // 2
|
|
)
|
|
|
|
# output
|
|
# +1 to include background class for class output
|
|
self.conv_op = nn.Conv2d(
|
|
num_filts // 4, num_filts // 4, kernel_size=3, padding=1
|
|
)
|
|
self.conv_op_bn = nn.BatchNorm2d(num_filts // 4)
|
|
self.conv_size_op = nn.Conv2d(
|
|
num_filts // 4, 2, kernel_size=1, padding=0
|
|
)
|
|
self.conv_classes_op = nn.Conv2d(
|
|
num_filts // 4, self.num_classes + 1, kernel_size=1, padding=0
|
|
)
|
|
|
|
if self.emb_dim > 0:
|
|
self.conv_emb = nn.Conv2d(
|
|
num_filts, self.emb_dim, kernel_size=1, padding=0
|
|
)
|
|
|
|
def forward(self, ip, return_feats=False):
|
|
|
|
# encoder
|
|
x1 = self.conv_dn_0(ip)
|
|
x2 = self.conv_dn_1(x1)
|
|
x3 = self.conv_dn_2(x2)
|
|
x3 = F.relu(self.conv_dn_3_bn(self.conv_dn_3(x3)), inplace=True)
|
|
|
|
# bottleneck
|
|
x = F.relu(self.conv_1d_bn(self.conv_1d(x3)), inplace=True)
|
|
x = self.att(x)
|
|
x = x.repeat([1, 1, self.bneck_height * 4, 1])
|
|
|
|
# decoder
|
|
x = self.conv_up_2(x + x3)
|
|
x = self.conv_up_3(x + x2)
|
|
x = self.conv_up_4(x + x1)
|
|
|
|
# output
|
|
x = F.relu(self.conv_op_bn(self.conv_op(x)), inplace=True)
|
|
cls = self.conv_classes_op(x)
|
|
comb = torch.softmax(cls, 1)
|
|
|
|
op = {}
|
|
op["pred_det"] = comb[:, :-1, :, :].sum(1).unsqueeze(1)
|
|
op["pred_size"] = F.relu(self.conv_size_op(x), inplace=True)
|
|
op["pred_class"] = comb
|
|
op["pred_class_un_norm"] = cls
|
|
if self.emb_dim > 0:
|
|
op["pred_emb"] = self.conv_emb(x)
|
|
if return_feats:
|
|
op["features"] = x
|
|
|
|
return op
|
|
|
|
|
|
class Net2DFastNoAttn(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_filts,
|
|
num_classes=0,
|
|
emb_dim=0,
|
|
ip_height=128,
|
|
resize_factor=0.5,
|
|
):
|
|
super(Net2DFastNoAttn, self).__init__()
|
|
|
|
self.num_classes = num_classes
|
|
self.emb_dim = emb_dim
|
|
self.num_filts = num_filts
|
|
self.resize_factor = resize_factor
|
|
self.ip_height_rs = ip_height
|
|
self.bneck_height = self.ip_height_rs // 32
|
|
|
|
self.conv_dn_0 = ConvBlockDownCoordF(
|
|
1,
|
|
num_filts // 4,
|
|
self.ip_height_rs,
|
|
k_size=3,
|
|
pad_size=1,
|
|
stride=1,
|
|
)
|
|
self.conv_dn_1 = ConvBlockDownCoordF(
|
|
num_filts // 4,
|
|
num_filts // 2,
|
|
self.ip_height_rs // 2,
|
|
k_size=3,
|
|
pad_size=1,
|
|
stride=1,
|
|
)
|
|
self.conv_dn_2 = ConvBlockDownCoordF(
|
|
num_filts // 2,
|
|
num_filts,
|
|
self.ip_height_rs // 4,
|
|
k_size=3,
|
|
pad_size=1,
|
|
stride=1,
|
|
)
|
|
self.conv_dn_3 = nn.Conv2d(num_filts, num_filts * 2, 3, padding=1)
|
|
self.conv_dn_3_bn = nn.BatchNorm2d(num_filts * 2)
|
|
|
|
self.conv_1d = nn.Conv2d(
|
|
num_filts * 2,
|
|
num_filts * 2,
|
|
(self.ip_height_rs // 8, 1),
|
|
padding=0,
|
|
)
|
|
self.conv_1d_bn = nn.BatchNorm2d(num_filts * 2)
|
|
|
|
self.conv_up_2 = ConvBlockUpF(
|
|
num_filts * 2, num_filts // 2, self.ip_height_rs // 8
|
|
)
|
|
self.conv_up_3 = ConvBlockUpF(
|
|
num_filts // 2, num_filts // 4, self.ip_height_rs // 4
|
|
)
|
|
self.conv_up_4 = ConvBlockUpF(
|
|
num_filts // 4, num_filts // 4, self.ip_height_rs // 2
|
|
)
|
|
|
|
# output
|
|
# +1 to include background class for class output
|
|
self.conv_op = nn.Conv2d(
|
|
num_filts // 4, num_filts // 4, kernel_size=3, padding=1
|
|
)
|
|
self.conv_op_bn = nn.BatchNorm2d(num_filts // 4)
|
|
self.conv_size_op = nn.Conv2d(
|
|
num_filts // 4, 2, kernel_size=1, padding=0
|
|
)
|
|
self.conv_classes_op = nn.Conv2d(
|
|
num_filts // 4, self.num_classes + 1, kernel_size=1, padding=0
|
|
)
|
|
|
|
if self.emb_dim > 0:
|
|
self.conv_emb = nn.Conv2d(
|
|
num_filts, self.emb_dim, kernel_size=1, padding=0
|
|
)
|
|
|
|
def forward(self, ip, return_feats=False):
|
|
|
|
x1 = self.conv_dn_0(ip)
|
|
x2 = self.conv_dn_1(x1)
|
|
x3 = self.conv_dn_2(x2)
|
|
x3 = F.relu(self.conv_dn_3_bn(self.conv_dn_3(x3)), inplace=True)
|
|
|
|
x = F.relu(self.conv_1d_bn(self.conv_1d(x3)), inplace=True)
|
|
x = x.repeat([1, 1, self.bneck_height * 4, 1])
|
|
|
|
x = self.conv_up_2(x + x3)
|
|
x = self.conv_up_3(x + x2)
|
|
x = self.conv_up_4(x + x1)
|
|
|
|
x = F.relu(self.conv_op_bn(self.conv_op(x)), inplace=True)
|
|
cls = self.conv_classes_op(x)
|
|
comb = torch.softmax(cls, 1)
|
|
|
|
op = {}
|
|
op["pred_det"] = comb[:, :-1, :, :].sum(1).unsqueeze(1)
|
|
op["pred_size"] = F.relu(self.conv_size_op(x), inplace=True)
|
|
op["pred_class"] = comb
|
|
op["pred_class_un_norm"] = cls
|
|
if self.emb_dim > 0:
|
|
op["pred_emb"] = self.conv_emb(x)
|
|
if return_feats:
|
|
op["features"] = x
|
|
|
|
return op
|
|
|
|
|
|
class Net2DFastNoCoordConv(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_filts,
|
|
num_classes=0,
|
|
emb_dim=0,
|
|
ip_height=128,
|
|
resize_factor=0.5,
|
|
):
|
|
super(Net2DFastNoCoordConv, self).__init__()
|
|
|
|
self.num_classes = num_classes
|
|
self.emb_dim = emb_dim
|
|
self.num_filts = num_filts
|
|
self.resize_factor = resize_factor
|
|
self.ip_height_rs = ip_height
|
|
self.bneck_height = self.ip_height_rs // 32
|
|
|
|
self.conv_dn_0 = ConvBlockDownStandard(
|
|
1,
|
|
num_filts // 4,
|
|
self.ip_height_rs,
|
|
k_size=3,
|
|
pad_size=1,
|
|
stride=1,
|
|
)
|
|
self.conv_dn_1 = ConvBlockDownStandard(
|
|
num_filts // 4,
|
|
num_filts // 2,
|
|
self.ip_height_rs // 2,
|
|
k_size=3,
|
|
pad_size=1,
|
|
stride=1,
|
|
)
|
|
self.conv_dn_2 = ConvBlockDownStandard(
|
|
num_filts // 2,
|
|
num_filts,
|
|
self.ip_height_rs // 4,
|
|
k_size=3,
|
|
pad_size=1,
|
|
stride=1,
|
|
)
|
|
self.conv_dn_3 = nn.Conv2d(num_filts, num_filts * 2, 3, padding=1)
|
|
self.conv_dn_3_bn = nn.BatchNorm2d(num_filts * 2)
|
|
|
|
self.conv_1d = nn.Conv2d(
|
|
num_filts * 2,
|
|
num_filts * 2,
|
|
(self.ip_height_rs // 8, 1),
|
|
padding=0,
|
|
)
|
|
self.conv_1d_bn = nn.BatchNorm2d(num_filts * 2)
|
|
|
|
self.att = SelfAttention(num_filts * 2, num_filts * 2)
|
|
|
|
self.conv_up_2 = ConvBlockUpStandard(
|
|
num_filts * 2, num_filts // 2, self.ip_height_rs // 8
|
|
)
|
|
self.conv_up_3 = ConvBlockUpStandard(
|
|
num_filts // 2, num_filts // 4, self.ip_height_rs // 4
|
|
)
|
|
self.conv_up_4 = ConvBlockUpStandard(
|
|
num_filts // 4, num_filts // 4, self.ip_height_rs // 2
|
|
)
|
|
|
|
# output
|
|
# +1 to include background class for class output
|
|
self.conv_op = nn.Conv2d(
|
|
num_filts // 4, num_filts // 4, kernel_size=3, padding=1
|
|
)
|
|
self.conv_op_bn = nn.BatchNorm2d(num_filts // 4)
|
|
self.conv_size_op = nn.Conv2d(
|
|
num_filts // 4, 2, kernel_size=1, padding=0
|
|
)
|
|
self.conv_classes_op = nn.Conv2d(
|
|
num_filts // 4, self.num_classes + 1, kernel_size=1, padding=0
|
|
)
|
|
|
|
if self.emb_dim > 0:
|
|
self.conv_emb = nn.Conv2d(
|
|
num_filts, self.emb_dim, kernel_size=1, padding=0
|
|
)
|
|
|
|
def forward(self, ip, return_feats=False):
|
|
|
|
x1 = self.conv_dn_0(ip)
|
|
x2 = self.conv_dn_1(x1)
|
|
x3 = self.conv_dn_2(x2)
|
|
x3 = F.relu(self.conv_dn_3_bn(self.conv_dn_3(x3)), inplace=True)
|
|
|
|
x = F.relu(self.conv_1d_bn(self.conv_1d(x3)), inplace=True)
|
|
x = self.att(x)
|
|
x = x.repeat([1, 1, self.bneck_height * 4, 1])
|
|
|
|
x = self.conv_up_2(x + x3)
|
|
x = self.conv_up_3(x + x2)
|
|
x = self.conv_up_4(x + x1)
|
|
|
|
x = F.relu(self.conv_op_bn(self.conv_op(x)), inplace=True)
|
|
cls = self.conv_classes_op(x)
|
|
comb = torch.softmax(cls, 1)
|
|
|
|
op = {}
|
|
op["pred_det"] = comb[:, :-1, :, :].sum(1).unsqueeze(1)
|
|
op["pred_size"] = F.relu(self.conv_size_op(x), inplace=True)
|
|
op["pred_class"] = comb
|
|
op["pred_class_un_norm"] = cls
|
|
if self.emb_dim > 0:
|
|
op["pred_emb"] = self.conv_emb(x)
|
|
if return_feats:
|
|
op["features"] = x
|
|
|
|
return op
|