batdetect2/bat_detect/detector/post_process.py
2023-02-22 15:06:02 +00:00

127 lines
4.2 KiB
Python

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
np.seterr(divide="ignore", invalid="ignore")
def x_coords_to_time(x_pos, sampling_rate, fft_win_length, fft_overlap):
nfft = int(fft_win_length * sampling_rate)
noverlap = int(fft_overlap * nfft)
return ((x_pos * (nfft - noverlap)) + noverlap) / sampling_rate
# return (1.0 - fft_overlap) * fft_win_length * (x_pos + 0.5) # 0.5 is for center of temporal window
def overall_class_pred(det_prob, class_prob):
weighted_pred = (class_prob * det_prob).sum(1)
return weighted_pred / weighted_pred.sum()
def run_nms(outputs, params, sampling_rate):
pred_det = outputs["pred_det"] # probability of box
pred_size = outputs["pred_size"] # box size
pred_det_nms = non_max_suppression(pred_det, params["nms_kernel_size"])
freq_rescale = (params["max_freq"] - params["min_freq"]) / pred_det.shape[
-2
]
# NOTE there will be small differences depending on which sampling rate is chosen
# as we are choosing the same sampling rate for the entire batch
duration = x_coords_to_time(
pred_det.shape[-1],
sampling_rate[0].item(),
params["fft_win_length"],
params["fft_overlap"],
)
top_k = int(duration * params["nms_top_k_per_sec"])
scores, y_pos, x_pos = get_topk_scores(pred_det_nms, top_k)
# loop over batch to save outputs
preds = []
feats = []
for ii in range(pred_det_nms.shape[0]):
# get valid indices
inds_ord = torch.argsort(x_pos[ii, :])
valid_inds = scores[ii, inds_ord] > params["detection_threshold"]
valid_inds = inds_ord[valid_inds]
# create result dictionary
pred = {}
pred["det_probs"] = scores[ii, valid_inds]
pred["x_pos"] = x_pos[ii, valid_inds]
pred["y_pos"] = y_pos[ii, valid_inds]
pred["bb_width"] = pred_size[ii, 0, pred["y_pos"], pred["x_pos"]]
pred["bb_height"] = pred_size[ii, 1, pred["y_pos"], pred["x_pos"]]
pred["start_times"] = x_coords_to_time(
pred["x_pos"].float() / params["resize_factor"],
sampling_rate[ii].item(),
params["fft_win_length"],
params["fft_overlap"],
)
pred["end_times"] = x_coords_to_time(
(pred["x_pos"].float() + pred["bb_width"])
/ params["resize_factor"],
sampling_rate[ii].item(),
params["fft_win_length"],
params["fft_overlap"],
)
pred["low_freqs"] = (
pred_size[ii].shape[1] - pred["y_pos"].float()
) * freq_rescale + params["min_freq"]
pred["high_freqs"] = (
pred["low_freqs"] + pred["bb_height"] * freq_rescale
)
# extract the per class votes
if "pred_class" in outputs:
pred["class_probs"] = outputs["pred_class"][
ii, :, y_pos[ii, valid_inds], x_pos[ii, valid_inds]
]
# extract the model features
if "features" in outputs:
feat = outputs["features"][
ii, :, y_pos[ii, valid_inds], x_pos[ii, valid_inds]
].transpose(0, 1)
feat = feat.cpu().numpy().astype(np.float32)
feats.append(feat)
# convert to numpy
for kk in pred.keys():
pred[kk] = pred[kk].cpu().numpy().astype(np.float32)
preds.append(pred)
return preds, feats
def non_max_suppression(heat, kernel_size):
# kernel can be an int or list/tuple
if type(kernel_size) is int:
kernel_size_h = kernel_size
kernel_size_w = kernel_size
pad_h = (kernel_size_h - 1) // 2
pad_w = (kernel_size_w - 1) // 2
hmax = nn.functional.max_pool2d(
heat, (kernel_size_h, kernel_size_w), stride=1, padding=(pad_h, pad_w)
)
keep = (hmax == heat).float()
return heat * keep
def get_topk_scores(scores, K):
# expects input of size: batch x 1 x height x width
batch, _, height, width = scores.size()
topk_scores, topk_inds = torch.topk(scores.view(batch, -1), K)
topk_inds = topk_inds % (height * width)
topk_ys = torch.div(topk_inds, width, rounding_mode="floor").long()
topk_xs = (topk_inds % width).long()
return topk_scores, topk_ys, topk_xs