mirror of
https://github.com/macaodha/batdetect2.git
synced 2025-06-29 14:41:58 +02:00
149 lines
4.9 KiB
Python
149 lines
4.9 KiB
Python
from collections.abc import Callable
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import xarray as xr
|
|
from soundevent import arrays, data
|
|
|
|
from batdetect2.preprocess.types import PreprocessorProtocol
|
|
from batdetect2.train.augmentations import (
|
|
add_echo,
|
|
mix_examples,
|
|
select_subclip,
|
|
)
|
|
from batdetect2.train.preprocess import generate_train_example
|
|
from batdetect2.train.types import ClipLabeller
|
|
|
|
|
|
def test_mix_examples(
|
|
sample_preprocessor: PreprocessorProtocol,
|
|
sample_labeller: ClipLabeller,
|
|
create_recording: Callable[..., data.Recording],
|
|
):
|
|
recording1 = create_recording()
|
|
recording2 = create_recording()
|
|
|
|
clip1 = data.Clip(recording=recording1, start_time=0.2, end_time=0.7)
|
|
clip2 = data.Clip(recording=recording2, start_time=0.3, end_time=0.8)
|
|
|
|
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
|
|
clip_annotation_2 = data.ClipAnnotation(clip=clip2)
|
|
|
|
example1 = generate_train_example(
|
|
clip_annotation_1,
|
|
preprocessor=sample_preprocessor,
|
|
labeller=sample_labeller,
|
|
)
|
|
example2 = generate_train_example(
|
|
clip_annotation_2,
|
|
preprocessor=sample_preprocessor,
|
|
labeller=sample_labeller,
|
|
)
|
|
|
|
mixed = mix_examples(example1, example2, preprocessor=sample_preprocessor)
|
|
|
|
assert mixed["spectrogram"].shape == example1["spectrogram"].shape
|
|
assert mixed["detection"].shape == example1["detection"].shape
|
|
assert mixed["size"].shape == example1["size"].shape
|
|
assert mixed["class"].shape == example1["class"].shape
|
|
|
|
|
|
@pytest.mark.parametrize("duration1", [0.1, 0.4, 0.7])
|
|
@pytest.mark.parametrize("duration2", [0.1, 0.4, 0.7])
|
|
def test_mix_examples_of_different_durations(
|
|
sample_preprocessor: PreprocessorProtocol,
|
|
sample_labeller: ClipLabeller,
|
|
create_recording: Callable[..., data.Recording],
|
|
duration1: float,
|
|
duration2: float,
|
|
):
|
|
recording1 = create_recording()
|
|
recording2 = create_recording()
|
|
|
|
clip1 = data.Clip(recording=recording1, start_time=0, end_time=duration1)
|
|
clip2 = data.Clip(recording=recording2, start_time=0, end_time=duration2)
|
|
|
|
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
|
|
clip_annotation_2 = data.ClipAnnotation(clip=clip2)
|
|
|
|
example1 = generate_train_example(
|
|
clip_annotation_1,
|
|
preprocessor=sample_preprocessor,
|
|
labeller=sample_labeller,
|
|
)
|
|
example2 = generate_train_example(
|
|
clip_annotation_2,
|
|
preprocessor=sample_preprocessor,
|
|
labeller=sample_labeller,
|
|
)
|
|
|
|
mixed = mix_examples(example1, example2, preprocessor=sample_preprocessor)
|
|
|
|
# Check the spectrogram has the expected duration
|
|
step = arrays.get_dim_step(mixed["spectrogram"], "time")
|
|
start, stop = arrays.get_dim_range(mixed["spectrogram"], "time")
|
|
assert start == 0
|
|
assert np.isclose(stop + step, duration1, atol=2 * step)
|
|
|
|
|
|
def test_add_echo(
|
|
sample_preprocessor: PreprocessorProtocol,
|
|
sample_labeller: ClipLabeller,
|
|
create_recording: Callable[..., data.Recording],
|
|
):
|
|
recording1 = create_recording()
|
|
clip1 = data.Clip(recording=recording1, start_time=0.2, end_time=0.7)
|
|
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
|
|
|
|
original = generate_train_example(
|
|
clip_annotation_1,
|
|
preprocessor=sample_preprocessor,
|
|
labeller=sample_labeller,
|
|
)
|
|
with_echo = add_echo(original, preprocessor=sample_preprocessor)
|
|
|
|
assert with_echo["spectrogram"].shape == original["spectrogram"].shape
|
|
xr.testing.assert_identical(with_echo["size"], original["size"])
|
|
xr.testing.assert_identical(with_echo["class"], original["class"])
|
|
xr.testing.assert_identical(with_echo["detection"], original["detection"])
|
|
|
|
|
|
def test_selected_random_subclip_has_the_correct_width(
|
|
sample_preprocessor: PreprocessorProtocol,
|
|
sample_labeller: ClipLabeller,
|
|
create_recording: Callable[..., data.Recording],
|
|
):
|
|
recording1 = create_recording()
|
|
clip1 = data.Clip(recording=recording1, start_time=0.2, end_time=0.7)
|
|
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
|
|
original = generate_train_example(
|
|
clip_annotation_1,
|
|
preprocessor=sample_preprocessor,
|
|
labeller=sample_labeller,
|
|
)
|
|
subclip = select_subclip(original, width=100)
|
|
|
|
assert subclip["spectrogram"].shape[1] == 100
|
|
|
|
|
|
def test_add_echo_after_subclip(
|
|
sample_preprocessor: PreprocessorProtocol,
|
|
sample_labeller: ClipLabeller,
|
|
create_recording: Callable[..., data.Recording],
|
|
):
|
|
recording1 = create_recording(duration=2)
|
|
clip1 = data.Clip(recording=recording1, start_time=0, end_time=1)
|
|
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
|
|
original = generate_train_example(
|
|
clip_annotation_1,
|
|
preprocessor=sample_preprocessor,
|
|
labeller=sample_labeller,
|
|
)
|
|
|
|
assert original.sizes["time"] > 512
|
|
|
|
subclip = select_subclip(original, width=512)
|
|
with_echo = add_echo(subclip, preprocessor=sample_preprocessor)
|
|
|
|
assert with_echo.sizes["time"] == 512
|