batdetect2/bat_detect/train/train_utils.py
2023-01-25 19:17:38 +00:00

210 lines
5.8 KiB
Python

import glob
import json
import os
import random
import numpy as np
def write_notes_file(file_name, text):
with open(file_name, "a") as da:
da.write(text + "\n")
def get_blank_dataset_dict(dataset_name, is_test, ann_path, wav_path):
ddict = {
"dataset_name": dataset_name,
"is_test": is_test,
"is_binary": False,
"ann_path": ann_path,
"wav_path": wav_path,
}
return ddict
def get_short_class_names(class_names, str_len=3):
class_names_short = []
for cc in class_names:
class_names_short.append(
" ".join([sp[:str_len] for sp in cc.split(" ")])
)
return class_names_short
def remove_dupes(data_train, data_test):
test_ids = [dd["id"] for dd in data_test]
data_train_prune = []
for aa in data_train:
if aa["id"] not in test_ids:
data_train_prune.append(aa)
diff = len(data_train) - len(data_train_prune)
if diff != 0:
print(diff, "items removed from train set")
return data_train_prune
def get_genus_mapping(class_names):
genus_names, genus_mapping = np.unique(
[cc.split(" ")[0] for cc in class_names], return_inverse=True
)
return genus_names.tolist(), genus_mapping.tolist()
def standardize_low_freq(data, class_of_interest):
# address the issue of highly variable low frequency annotations
# this often happens for contstant frequency calls
# for the class of interest sets the low and high freq to be the dataset mean
low_freqs = []
high_freqs = []
for dd in data:
for aa in dd["annotation"]:
if aa["class"] == class_of_interest:
low_freqs.append(aa["low_freq"])
high_freqs.append(aa["high_freq"])
low_mean = np.mean(low_freqs)
high_mean = np.mean(high_freqs)
assert low_mean < high_mean
print("\nStandardizing low and high frequency for:")
print(class_of_interest)
print("low: ", round(low_mean, 2))
print("high: ", round(high_mean, 2))
# only set the low freq, high stays the same
# assumes that low_mean < high_mean
for dd in data:
for aa in dd["annotation"]:
if aa["class"] == class_of_interest:
aa["low_freq"] = low_mean
if aa["high_freq"] < low_mean:
aa["high_freq"] = high_mean
return data
def load_set_of_anns(
data,
classes_to_ignore=[],
events_of_interest=None,
convert_to_genus=False,
verbose=True,
list_of_anns=False,
filter_issues=False,
name_replace=False,
):
# load the annotations
anns = []
if list_of_anns:
# path to list of individual json files
anns.extend(load_anns_from_path(data["ann_path"], data["wav_path"]))
else:
# dictionary of datasets
for dd in data:
anns.extend(load_anns(dd["ann_path"], dd["wav_path"]))
# discarding unannoated files
anns = [aa for aa in anns if aa["annotated"] is True]
# filter files that have annotation issues - is the input is a dictionary of
# datasets, this will lilely have already been done
if filter_issues:
anns = [aa for aa in anns if aa["issues"] is False]
# check for some basic formatting errors with class names
for ann in anns:
for aa in ann["annotation"]:
aa["class"] = aa["class"].strip()
# only load specified events - i.e. types of calls
if events_of_interest is not None:
for ann in anns:
filtered_events = []
for aa in ann["annotation"]:
if aa["event"] in events_of_interest:
filtered_events.append(aa)
ann["annotation"] = filtered_events
# change class names
# replace_names will be a dictionary mapping input name to output
if type(name_replace) is dict:
for ann in anns:
for aa in ann["annotation"]:
if aa["class"] in name_replace:
aa["class"] = name_replace[aa["class"]]
# convert everything to genus name
if convert_to_genus:
for ann in anns:
for aa in ann["annotation"]:
aa["class"] = aa["class"].split(" ")[0]
# get unique class names
class_names_all = []
for ann in anns:
for aa in ann["annotation"]:
if aa["class"] not in classes_to_ignore:
class_names_all.append(aa["class"])
class_names, class_cnts = np.unique(class_names_all, return_counts=True)
class_inv_freq = class_cnts.sum() / (
len(class_names) * class_cnts.astype(np.float32)
)
if verbose:
print("Class count:")
str_len = np.max([len(cc) for cc in class_names]) + 5
for cc in range(len(class_names)):
print(
str(cc).ljust(5)
+ class_names[cc].ljust(str_len)
+ str(class_cnts[cc])
)
if len(classes_to_ignore) == 0:
return anns
else:
return anns, class_names.tolist(), class_inv_freq.tolist()
def load_anns(ann_file_name, raw_audio_dir):
with open(ann_file_name) as da:
anns = json.load(da)
for aa in anns:
aa["file_path"] = raw_audio_dir + aa["id"]
return anns
def load_anns_from_path(ann_file_dir, raw_audio_dir):
files = glob.glob(ann_file_dir + "*.json")
anns = []
for ff in files:
with open(ff) as da:
ann = json.load(da)
ann["file_path"] = raw_audio_dir + ann["id"]
anns.append(ann)
return anns
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count