mirror of
https://github.com/macaodha/batdetect2.git
synced 2025-06-29 14:41:58 +02:00
111 lines
3.2 KiB
Python
111 lines
3.2 KiB
Python
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import xarray as xr
|
|
from soundevent import data
|
|
|
|
from batdetect2.train.labels import generate_heatmaps
|
|
|
|
recording = data.Recording(
|
|
samplerate=256_000,
|
|
duration=1,
|
|
channels=1,
|
|
time_expansion=1,
|
|
hash="asdf98sdf",
|
|
path=Path("/path/to/audio.wav"),
|
|
)
|
|
|
|
clip = data.Clip(
|
|
recording=recording,
|
|
start_time=0,
|
|
end_time=1,
|
|
)
|
|
|
|
|
|
def test_generated_heatmaps_have_correct_dimensions():
|
|
spec = xr.DataArray(
|
|
data=np.random.rand(100, 100),
|
|
dims=["time", "frequency"],
|
|
coords={
|
|
"time": np.linspace(0, 100, 100, endpoint=False),
|
|
"frequency": np.linspace(0, 100, 100, endpoint=False),
|
|
},
|
|
)
|
|
|
|
clip_annotation = data.ClipAnnotation(
|
|
clip=clip,
|
|
sound_events=[
|
|
data.SoundEventAnnotation(
|
|
sound_event=data.SoundEvent(
|
|
recording=recording,
|
|
geometry=data.BoundingBox(
|
|
coordinates=[10, 10, 20, 20],
|
|
),
|
|
),
|
|
)
|
|
],
|
|
)
|
|
|
|
detection_heatmap, class_heatmap, size_heatmap = generate_heatmaps(
|
|
clip_annotation.sound_events,
|
|
spec,
|
|
class_names=["bat", "cat"],
|
|
encoder=lambda _: "bat",
|
|
)
|
|
|
|
assert isinstance(detection_heatmap, xr.DataArray)
|
|
assert detection_heatmap.shape == (100, 100)
|
|
assert detection_heatmap.dims == ("time", "frequency")
|
|
|
|
assert isinstance(class_heatmap, xr.DataArray)
|
|
assert class_heatmap.shape == (2, 100, 100)
|
|
assert class_heatmap.dims == ("category", "time", "frequency")
|
|
assert class_heatmap.coords["category"].values.tolist() == ["bat", "cat"]
|
|
|
|
assert isinstance(size_heatmap, xr.DataArray)
|
|
assert size_heatmap.shape == (2, 100, 100)
|
|
assert size_heatmap.dims == ("dimension", "time", "frequency")
|
|
assert size_heatmap.coords["dimension"].values.tolist() == [
|
|
"width",
|
|
"height",
|
|
]
|
|
|
|
|
|
def test_generated_heatmap_are_non_zero_at_correct_positions():
|
|
spec = xr.DataArray(
|
|
data=np.random.rand(100, 100),
|
|
dims=["time", "frequency"],
|
|
coords={
|
|
"time": np.linspace(0, 100, 100, endpoint=False),
|
|
"frequency": np.linspace(0, 100, 100, endpoint=False),
|
|
},
|
|
)
|
|
|
|
clip_annotation = data.ClipAnnotation(
|
|
clip=clip,
|
|
sound_events=[
|
|
data.SoundEventAnnotation(
|
|
sound_event=data.SoundEvent(
|
|
recording=recording,
|
|
geometry=data.BoundingBox(
|
|
coordinates=[10, 10, 20, 20],
|
|
),
|
|
),
|
|
)
|
|
],
|
|
)
|
|
|
|
detection_heatmap, class_heatmap, size_heatmap = generate_heatmaps(
|
|
clip_annotation.sound_events,
|
|
spec,
|
|
class_names=["bat", "cat"],
|
|
encoder=lambda _: "bat",
|
|
time_scale=1,
|
|
frequency_scale=1,
|
|
)
|
|
assert size_heatmap.sel(time=10, frequency=10, dimension="width") == 10
|
|
assert size_heatmap.sel(time=10, frequency=10, dimension="height") == 10
|
|
assert class_heatmap.sel(time=10, frequency=10, category="bat") == 1.0
|
|
assert class_heatmap.sel(time=10, frequency=10, category="cat") == 0.0
|
|
assert detection_heatmap.sel(time=10, frequency=10) == 1.0
|