mirror of
https://github.com/macaodha/batdetect2.git
synced 2025-06-29 14:41:58 +02:00
71 lines
2.4 KiB
Python
71 lines
2.4 KiB
Python
from collections.abc import Callable
|
|
|
|
import xarray as xr
|
|
from soundevent import data
|
|
|
|
from batdetect2.train.augmentations import (
|
|
add_echo,
|
|
mix_examples,
|
|
select_random_subclip,
|
|
)
|
|
from batdetect2.train.preprocess import (
|
|
TrainPreprocessingConfig,
|
|
generate_train_example,
|
|
)
|
|
|
|
|
|
def test_mix_examples(
|
|
recording_factory: Callable[..., data.Recording],
|
|
):
|
|
recording1 = recording_factory()
|
|
recording2 = recording_factory()
|
|
|
|
clip1 = data.Clip(recording=recording1, start_time=0.2, end_time=0.7)
|
|
|
|
clip2 = data.Clip(recording=recording2, start_time=0.3, end_time=0.8)
|
|
|
|
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
|
|
|
|
clip_annotation_2 = data.ClipAnnotation(clip=clip2)
|
|
|
|
config = TrainPreprocessingConfig()
|
|
|
|
example1 = generate_train_example(clip_annotation_1, config)
|
|
example2 = generate_train_example(clip_annotation_2, config)
|
|
|
|
mixed = mix_examples(example1, example2, config=config.preprocessing)
|
|
|
|
assert mixed["spectrogram"].shape == example1["spectrogram"].shape
|
|
assert mixed["detection"].shape == example1["detection"].shape
|
|
assert mixed["size"].shape == example1["size"].shape
|
|
assert mixed["class"].shape == example1["class"].shape
|
|
|
|
|
|
def test_add_echo(
|
|
recording_factory: Callable[..., data.Recording],
|
|
):
|
|
recording1 = recording_factory()
|
|
clip1 = data.Clip(recording=recording1, start_time=0.2, end_time=0.7)
|
|
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
|
|
config = TrainPreprocessingConfig()
|
|
original = generate_train_example(clip_annotation_1, config)
|
|
with_echo = add_echo(original, config=config.preprocessing)
|
|
|
|
assert with_echo["spectrogram"].shape == original["spectrogram"].shape
|
|
xr.testing.assert_identical(with_echo["size"], original["size"])
|
|
xr.testing.assert_identical(with_echo["class"], original["class"])
|
|
xr.testing.assert_identical(with_echo["detection"], original["detection"])
|
|
|
|
|
|
def test_selected_random_subclip_has_the_correct_width(
|
|
recording_factory: Callable[..., data.Recording],
|
|
):
|
|
recording1 = recording_factory()
|
|
clip1 = data.Clip(recording=recording1, start_time=0.2, end_time=0.7)
|
|
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
|
|
config = TrainPreprocessingConfig()
|
|
original = generate_train_example(clip_annotation_1, config)
|
|
subclip = select_random_subclip(original, width=100)
|
|
|
|
assert subclip["spectrogram"].shape[1] == 100
|