batdetect2/app.py
2023-04-07 11:24:22 -06:00

153 lines
3.9 KiB
Python

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import batdetect2.utils.audio_utils as au
import batdetect2.utils.detector_utils as du
import batdetect2.utils.plot_utils as viz
# setup the arguments
args = {}
args = du.get_default_run_config()
args["detection_threshold"] = 0.3
args["time_expansion_factor"] = 1
args["model_path"] = "models/Net2DFast_UK_same.pth.tar"
max_duration = 2.0
# load the model
model, params = du.load_model(args["model_path"])
df = gr.Dataframe(
headers=["species", "time", "detection_prob", "species_prob"],
datatype=["str", "str", "str", "str"],
row_count=1,
col_count=(4, "fixed"),
label="Predictions",
)
examples = [
["example_data/audio/20170701_213954-MYOMYS-LR_0_0.5.wav", 0.3],
["example_data/audio/20180530_213516-EPTSER-LR_0_0.5.wav", 0.3],
["example_data/audio/20180627_215323-RHIFER-LR_0_0.5.wav", 0.3],
]
def make_prediction(file_name=None, detection_threshold=0.3):
if file_name is not None:
audio_file = file_name
else:
return "You must provide an input audio file."
if detection_threshold is not None and detection_threshold != "":
args["detection_threshold"] = float(detection_threshold)
run_config = {
**params,
**args,
"max_duration": max_duration,
}
# process the file to generate predictions
results = du.process_file(
audio_file,
model,
run_config,
)
anns = [ann for ann in results["pred_dict"]["annotation"]]
clss = [aa["class"] for aa in anns]
st_time = [aa["start_time"] for aa in anns]
cls_prob = [aa["class_prob"] for aa in anns]
det_prob = [aa["det_prob"] for aa in anns]
data = {
"species": clss,
"time": st_time,
"detection_prob": det_prob,
"species_prob": cls_prob,
}
df = pd.DataFrame(data=data)
im = generate_results_image(audio_file, anns)
return [df, im]
def generate_results_image(audio_file, anns):
# load audio
sampling_rate, audio = au.load_audio(
audio_file,
args["time_expansion_factor"],
params["target_samp_rate"],
params["scale_raw_audio"],
max_duration=max_duration,
)
duration = audio.shape[0] / sampling_rate
# generate spec
spec, spec_viz = au.generate_spectrogram(
audio, sampling_rate, params, True, False
)
# create fig
plt.close("all")
fig = plt.figure(
1,
figsize=(spec.shape[1] / 100, spec.shape[0] / 100),
dpi=100,
frameon=False,
)
spec_duration = au.x_coords_to_time(
spec.shape[1],
sampling_rate,
params["fft_win_length"],
params["fft_overlap"],
)
viz.create_box_image(
spec,
fig,
anns,
0,
spec_duration,
spec_duration,
params,
spec.max() * 1.1,
False,
True,
)
plt.ylabel("Freq - kHz")
plt.xlabel("Time - secs")
plt.tight_layout()
# convert fig to image
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
w, h = fig.canvas.get_width_height()
im = data.reshape((int(h), int(w), -1))
return im
descr_txt = (
"Demo of BatDetect2 deep learning-based bat echolocation call detection. "
"<br>This model is only trained on bat species from the UK. If the input "
"file is longer than 2 seconds, only the first 2 seconds will be processed."
"<br>Check out the paper [here](https://www.biorxiv.org/content/10.1101/2022.12.14.520490v1)."
)
gr.Interface(
fn=make_prediction,
inputs=[
gr.Audio(source="upload", type="filepath", optional=True),
gr.Dropdown([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]),
],
outputs=[df, gr.Image(label="Visualisation")],
theme="huggingface",
title="BatDetect2 Demo",
description=descr_txt,
examples=examples,
allow_flagging="never",
).launch()