batdetect2/batdetect2/models/blocks.py
2024-04-24 10:06:04 -06:00

220 lines
5.9 KiB
Python

"""Module containing custom NN blocks.
All these classes are subclasses of `torch.nn.Module` and can be used to build
complex neural network architectures.
"""
from typing import Tuple
import torch
import torch.nn.functional as F
from torch import nn
__all__ = [
"SelfAttention",
"ConvBlockDownCoordF",
"ConvBlockDownStandard",
"ConvBlockUpF",
"ConvBlockUpStandard",
]
class SelfAttention(nn.Module):
"""Self-Attention module.
This module implements self-attention mechanism.
"""
def __init__(self, ip_dim: int, att_dim: int):
super().__init__()
# Note, does not encode position information (absolute or realtive)
self.temperature = 1.0
self.att_dim = att_dim
self.key_fun = nn.Linear(ip_dim, att_dim)
self.val_fun = nn.Linear(ip_dim, att_dim)
self.que_fun = nn.Linear(ip_dim, att_dim)
self.pro_fun = nn.Linear(att_dim, ip_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.squeeze(2).permute(0, 2, 1)
key = torch.matmul(
x, self.key_fun.weight.T
) + self.key_fun.bias.unsqueeze(0).unsqueeze(0)
query = torch.matmul(
x, self.que_fun.weight.T
) + self.que_fun.bias.unsqueeze(0).unsqueeze(0)
value = torch.matmul(
x, self.val_fun.weight.T
) + self.val_fun.bias.unsqueeze(0).unsqueeze(0)
kk_qq = torch.bmm(key, query.permute(0, 2, 1)) / (
self.temperature * self.att_dim
)
att_weights = F.softmax(kk_qq, 1)
att = torch.bmm(value.permute(0, 2, 1), att_weights)
op = torch.matmul(
att.permute(0, 2, 1), self.pro_fun.weight.T
) + self.pro_fun.bias.unsqueeze(0).unsqueeze(0)
op = op.permute(0, 2, 1).unsqueeze(2)
return op
class ConvBlockDownCoordF(nn.Module):
"""Convolutional Block with Downsampling and Coord Feature.
This block performs convolution followed by downsampling
and concatenates with coordinate information.
"""
def __init__(
self,
in_chn: int,
out_chn: int,
ip_height: int,
k_size: int = 3,
pad_size: int = 1,
stride: int = 1,
):
super().__init__()
self.coords = nn.Parameter(
torch.linspace(-1, 1, ip_height)[None, None, ..., None],
requires_grad=False,
)
self.conv = nn.Conv2d(
in_chn + 1,
out_chn,
kernel_size=k_size,
padding=pad_size,
stride=stride,
)
self.conv_bn = nn.BatchNorm2d(out_chn)
def forward(self, x: torch.Tensor) -> torch.Tensor:
freq_info = self.coords.repeat(x.shape[0], 1, 1, x.shape[3])
x = torch.cat((x, freq_info), 1)
x = F.max_pool2d(self.conv(x), 2, 2)
x = F.relu(self.conv_bn(x), inplace=True)
return x
class ConvBlockDownStandard(nn.Module):
"""Convolutional Block with Downsampling.
This block performs convolution followed by downsampling.
"""
def __init__(
self,
in_chn,
out_chn,
k_size=3,
pad_size=1,
stride=1,
):
super(ConvBlockDownStandard, self).__init__()
self.conv = nn.Conv2d(
in_chn,
out_chn,
kernel_size=k_size,
padding=pad_size,
stride=stride,
)
self.conv_bn = nn.BatchNorm2d(out_chn)
def forward(self, x):
x = F.max_pool2d(self.conv(x), 2, 2)
x = F.relu(self.conv_bn(x), inplace=True)
return x
class ConvBlockUpF(nn.Module):
"""Convolutional Block with Upsampling and Coord Feature.
This block performs convolution followed by upsampling
and concatenates with coordinate information.
"""
def __init__(
self,
in_chn: int,
out_chn: int,
ip_height: int,
k_size: int = 3,
pad_size: int = 1,
up_mode: str = "bilinear",
up_scale: Tuple[int, int] = (2, 2),
):
super().__init__()
self.up_scale = up_scale
self.up_mode = up_mode
self.coords = nn.Parameter(
torch.linspace(-1, 1, ip_height * up_scale[0])[
None, None, ..., None
],
requires_grad=False,
)
self.conv = nn.Conv2d(
in_chn + 1, out_chn, kernel_size=k_size, padding=pad_size
)
self.conv_bn = nn.BatchNorm2d(out_chn)
def forward(self, x: torch.Tensor) -> torch.Tensor:
op = F.interpolate(
x,
size=(
x.shape[-2] * self.up_scale[0],
x.shape[-1] * self.up_scale[1],
),
mode=self.up_mode,
align_corners=False,
)
freq_info = self.coords.repeat(op.shape[0], 1, 1, op.shape[3])
op = torch.cat((op, freq_info), 1)
op = self.conv(op)
op = F.relu(self.conv_bn(op), inplace=True)
return op
class ConvBlockUpStandard(nn.Module):
"""Convolutional Block with Upsampling.
This block performs convolution followed by upsampling.
"""
def __init__(
self,
in_chn: int,
out_chn: int,
k_size: int = 3,
pad_size: int = 1,
up_mode: str = "bilinear",
up_scale: Tuple[int, int] = (2, 2),
):
super(ConvBlockUpStandard, self).__init__()
self.up_scale = up_scale
self.up_mode = up_mode
self.conv = nn.Conv2d(
in_chn, out_chn, kernel_size=k_size, padding=pad_size
)
self.conv_bn = nn.BatchNorm2d(out_chn)
def forward(self, x: torch.Tensor) -> torch.Tensor:
op = F.interpolate(
x,
size=(
x.shape[-2] * self.up_scale[0],
x.shape[-1] * self.up_scale[1],
),
mode=self.up_mode,
align_corners=False,
)
op = self.conv(op)
op = F.relu(self.conv_bn(op), inplace=True)
return op