batdetect2/bat_detect/detector/post_process.py
2023-02-22 22:45:26 +00:00

258 lines
7.5 KiB
Python

"""Post-processing of the output of the model."""
from typing import List, Optional, Tuple
import numpy as np
import torch
from torch import nn
try:
from typing import TypedDict
except ImportError:
from typing_extensions import TypedDict
np.seterr(divide="ignore", invalid="ignore")
def x_coords_to_time(
x_pos: float,
sampling_rate: int,
fft_win_length: float,
fft_overlap: float,
) -> float:
"""Convert x coordinates of spectrogram to time in seconds.
Args:
x_pos: X position of the detection in pixels.
sampling_rate: Sampling rate of the audio in Hz.
fft_win_length: Length of the FFT window in seconds.
fft_overlap: Overlap of the FFT windows in seconds.
Returns:
Time in seconds.
"""
nfft = int(fft_win_length * sampling_rate)
noverlap = int(fft_overlap * nfft)
return ((x_pos * (nfft - noverlap)) + noverlap) / sampling_rate
def overall_class_pred(det_prob, class_prob):
weighted_pred = (class_prob * det_prob).sum(1)
return weighted_pred / weighted_pred.sum()
class NonMaximumSuppressionConfig(TypedDict):
"""Configuration for non-maximum suppression."""
nms_kernel_size: int
"""Size of the kernel for non-maximum suppression."""
max_freq: int
"""Maximum frequency to consider in Hz."""
min_freq: int
"""Minimum frequency to consider in Hz."""
fft_win_length: float
"""Length of the FFT window in seconds."""
fft_overlap: float
"""Overlap of the FFT windows in seconds."""
resize_factor: float
"""Factor by which the input was resized."""
nms_top_k_per_sec: float
"""Number of top detections to keep per second."""
detection_threshold: float
"""Threshold for detection probability."""
class PredictionResults(TypedDict):
"""Results of the prediction.
Each key is a list of length `num_detections` containing the
corresponding values for each detection.
"""
det_probs: np.ndarray
"""Detection probabilities."""
x_pos: np.ndarray
"""X position of the detection in pixels."""
y_pos: np.ndarray
"""Y position of the detection in pixels."""
bb_width: np.ndarray
"""Width of the detection in pixels."""
bb_height: np.ndarray
"""Height of the detection in pixels."""
start_times: np.ndarray
"""Start times of the detections in seconds."""
end_times: np.ndarray
"""End times of the detections in seconds."""
low_freqs: np.ndarray
"""Low frequencies of the detections in Hz."""
high_freqs: np.ndarray
"""High frequencies of the detections in Hz."""
class_probs: Optional[np.ndarray]
"""Class probabilities."""
class ModelOutputs(TypedDict):
"""Outputs of the model."""
pred_det: torch.Tensor
"""Detection probabilities."""
pred_size: torch.Tensor
"""Box sizes."""
pred_class: Optional[torch.Tensor]
"""Class probabilities."""
features: Optional[torch.Tensor]
"""Features extracted by the model."""
def run_nms(
outputs: ModelOutputs,
params: NonMaximumSuppressionConfig,
sampling_rate: np.ndarray,
) -> Tuple[List[PredictionResults], List[np.ndarray]]:
"""Run non-maximum suppression on the output of the model.
Model outputs processed are expected to have a batch dimension.
Each element of the batch is processed independently. The
result is a pair of lists, one for the predictions and one for
the features. Each element of the lists corresponds to one
element of the batch.
"""
pred_det = outputs["pred_det"] # probability of box
pred_size = outputs["pred_size"] # box size
pred_det_nms = non_max_suppression(pred_det, params["nms_kernel_size"])
freq_rescale = (params["max_freq"] - params["min_freq"]) / pred_det.shape[
-2
]
# NOTE there will be small differences depending on which sampling rate is chosen
# as we are choosing the same sampling rate for the entire batch
duration = x_coords_to_time(
pred_det.shape[-1],
int(sampling_rate[0].item()),
params["fft_win_length"],
params["fft_overlap"],
)
top_k = int(duration * params["nms_top_k_per_sec"])
scores, y_pos, x_pos = get_topk_scores(pred_det_nms, top_k)
# loop over batch to save outputs
preds: List[PredictionResults] = []
feats: List[np.ndarray] = []
for num_detection in range(pred_det_nms.shape[0]):
# get valid indices
inds_ord = torch.argsort(x_pos[num_detection, :])
valid_inds = (
scores[num_detection, inds_ord] > params["detection_threshold"]
)
valid_inds = inds_ord[valid_inds]
# create result dictionary
pred = {}
pred["det_probs"] = scores[num_detection, valid_inds]
pred["x_pos"] = x_pos[num_detection, valid_inds]
pred["y_pos"] = y_pos[num_detection, valid_inds]
pred["bb_width"] = pred_size[
num_detection, 0, pred["y_pos"], pred["x_pos"]
]
pred["bb_height"] = pred_size[
num_detection, 1, pred["y_pos"], pred["x_pos"]
]
pred["start_times"] = x_coords_to_time(
pred["x_pos"].float() / params["resize_factor"],
int(sampling_rate[num_detection].item()),
params["fft_win_length"],
params["fft_overlap"],
)
pred["end_times"] = x_coords_to_time(
(pred["x_pos"].float() + pred["bb_width"])
/ params["resize_factor"],
int(sampling_rate[num_detection].item()),
params["fft_win_length"],
params["fft_overlap"],
)
pred["low_freqs"] = (
pred_size[num_detection].shape[1] - pred["y_pos"].float()
) * freq_rescale + params["min_freq"]
pred["high_freqs"] = (
pred["low_freqs"] + pred["bb_height"] * freq_rescale
)
# extract the per class votes
pred_class = outputs.get("pred_class")
if pred_class is not None:
pred["class_probs"] = pred_class[
num_detection,
:,
y_pos[num_detection, valid_inds],
x_pos[num_detection, valid_inds],
]
# extract the model features
features = outputs.get("features")
if features is not None:
feat = features[
num_detection,
:,
y_pos[num_detection, valid_inds],
x_pos[num_detection, valid_inds],
].transpose(0, 1)
feat = feat.cpu().numpy().astype(np.float32)
feats.append(feat)
# convert to numpy
for key, value in pred.items():
pred[key] = value.cpu().numpy().astype(np.float32)
preds.append(pred)
return preds, feats
def non_max_suppression(heat, kernel_size):
# kernel can be an int or list/tuple
if isinstance(kernel_size, int):
kernel_size_h = kernel_size
kernel_size_w = kernel_size
pad_h = (kernel_size_h - 1) // 2
pad_w = (kernel_size_w - 1) // 2
hmax = nn.functional.max_pool2d(
heat, (kernel_size_h, kernel_size_w), stride=1, padding=(pad_h, pad_w)
)
keep = (hmax == heat).float()
return heat * keep
def get_topk_scores(scores, K):
# expects input of size: batch x 1 x height x width
batch, _, height, width = scores.size()
topk_scores, topk_inds = torch.topk(scores.view(batch, -1), K)
topk_inds = topk_inds % (height * width)
topk_ys = torch.div(topk_inds, width, rounding_mode="floor").long()
topk_xs = (topk_inds % width).long()
return topk_scores, topk_ys, topk_xs