batdetect2/batdetect2/train/losses.py
2024-04-24 10:06:04 -06:00

78 lines
1.8 KiB
Python

from typing import Optional
import torch
import torch.nn.functional as F
def bbox_size_loss(
pred_size: torch.Tensor,
gt_size: torch.Tensor,
) -> torch.Tensor:
"""
Bounding box size loss. Only compute loss where there is a bounding box.
"""
gt_size_mask = (gt_size > 0).float()
return F.l1_loss(pred_size * gt_size_mask, gt_size, reduction="sum") / (
gt_size_mask.sum() + 1e-5
)
def focal_loss(
pred: torch.Tensor,
gt: torch.Tensor,
weights: Optional[torch.Tensor] = None,
valid_mask: Optional[torch.Tensor] = None,
eps: float = 1e-5,
beta: float = 4,
alpha: float = 2,
) -> torch.Tensor:
"""
Focal loss adapted from CornerNet: Detecting Objects as Paired Keypoints
pred (batch x c x h x w)
gt (batch x c x h x w)
"""
pos_inds = gt.eq(1).float()
neg_inds = gt.lt(1).float()
pos_loss = torch.log(pred + eps) * torch.pow(1 - pred, alpha) * pos_inds
neg_loss = (
torch.log(1 - pred + eps)
* torch.pow(pred, alpha)
* torch.pow(1 - gt, beta)
* neg_inds
)
if weights is not None:
pos_loss = pos_loss * weights
# neg_loss = neg_loss*weights
if valid_mask is not None:
pos_loss = pos_loss * valid_mask
neg_loss = neg_loss * valid_mask
pos_loss = pos_loss.sum()
neg_loss = neg_loss.sum()
num_pos = pos_inds.float().sum()
if num_pos == 0:
loss = -neg_loss
else:
loss = -(pos_loss + neg_loss) / num_pos
return loss
def mse_loss(
pred: torch.Tensor,
gt: torch.Tensor,
valid_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Mean squared error loss.
"""
if valid_mask is None:
op = ((gt - pred) ** 2).mean()
else:
op = (valid_mask * ((gt - pred) ** 2)).sum() / valid_mask.sum()
return op