batdetect2/batdetect2/train/losses.py
mbsantiago f7d6516550 WIP
2025-01-23 14:08:55 +00:00

161 lines
4.0 KiB
Python

from typing import NamedTuple, Optional
import torch
import torch.nn.functional as F
from pydantic import Field
from batdetect2.configs import BaseConfig
from batdetect2.models.typing import ModelOutput
from batdetect2.plot import detection
from batdetect2.train.dataset import TrainExample
class SizeLossConfig(BaseConfig):
weight: float = 0.1
def bbox_size_loss(
pred_size: torch.Tensor,
gt_size: torch.Tensor,
) -> torch.Tensor:
"""
Bounding box size loss. Only compute loss where there is a bounding box.
"""
gt_size_mask = (gt_size > 0).float()
return F.l1_loss(pred_size * gt_size_mask, gt_size, reduction="sum") / (
gt_size_mask.sum() + 1e-5
)
class FocalLossConfig(BaseConfig):
beta: float = 4
alpha: float = 2
def focal_loss(
pred: torch.Tensor,
gt: torch.Tensor,
weights: Optional[torch.Tensor] = None,
valid_mask: Optional[torch.Tensor] = None,
eps: float = 1e-5,
beta: float = 4,
alpha: float = 2,
) -> torch.Tensor:
"""
Focal loss adapted from CornerNet: Detecting Objects as Paired Keypoints
pred (batch x c x h x w)
gt (batch x c x h x w)
"""
pos_inds = gt.eq(1).float()
neg_inds = gt.lt(1).float()
pos_loss = torch.log(pred + eps) * torch.pow(1 - pred, alpha) * pos_inds
neg_loss = (
torch.log(1 - pred + eps)
* torch.pow(pred, alpha)
* torch.pow(1 - gt, beta)
* neg_inds
)
if weights is not None:
pos_loss = pos_loss * torch.tensor(weights)
# neg_loss = neg_loss*weights
if valid_mask is not None:
pos_loss = pos_loss * valid_mask
neg_loss = neg_loss * valid_mask
pos_loss = pos_loss.sum()
neg_loss = neg_loss.sum()
num_pos = pos_inds.float().sum()
if num_pos == 0:
loss = -neg_loss
else:
loss = -(pos_loss + neg_loss) / num_pos
return loss
def mse_loss(
pred: torch.Tensor,
gt: torch.Tensor,
valid_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Mean squared error loss.
"""
if valid_mask is None:
op = ((gt - pred) ** 2).mean()
else:
op = (valid_mask * ((gt - pred) ** 2)).sum() / valid_mask.sum()
return op
class DetectionLossConfig(BaseConfig):
weight: float = 1.0
focal: FocalLossConfig = Field(default_factory=FocalLossConfig)
class ClassificationLossConfig(BaseConfig):
weight: float = 2.0
focal: FocalLossConfig = Field(default_factory=FocalLossConfig)
class_weights: Optional[list[float]] = None
class LossConfig(BaseConfig):
detection: DetectionLossConfig = Field(default_factory=DetectionLossConfig)
size: SizeLossConfig = Field(default_factory=SizeLossConfig)
classification: ClassificationLossConfig = Field(
default_factory=ClassificationLossConfig
)
class Losses(NamedTuple):
detection: torch.Tensor
size: torch.Tensor
classification: torch.Tensor
total: torch.Tensor
def compute_loss(
batch: TrainExample,
outputs: ModelOutput,
conf: LossConfig,
class_weights: Optional[torch.Tensor] = None,
) -> Losses:
detection_loss = focal_loss(
outputs.detection_probs,
batch.detection_heatmap,
beta=conf.detection.focal.beta,
alpha=conf.detection.focal.alpha,
)
size_loss = bbox_size_loss(
outputs.size_preds,
batch.size_heatmap,
)
valid_mask = batch.class_heatmap.any(dim=1, keepdim=True).float()
classification_loss = focal_loss(
outputs.class_probs,
batch.class_heatmap,
weights=class_weights,
valid_mask=valid_mask,
beta=conf.classification.focal.beta,
alpha=conf.classification.focal.alpha,
)
total = (
detection_loss * conf.detection.weight
+ size_loss * conf.size.weight
+ classification_loss * conf.classification.weight
)
return Losses(
detection=detection_loss,
size=size_loss,
classification=classification_loss,
total=total,
)