batdetect2/tests/test_train/test_augmentations.py
mbsantiago f7d6516550 WIP
2025-01-23 14:08:55 +00:00

137 lines
4.6 KiB
Python

from collections.abc import Callable
import numpy as np
import xarray as xr
from soundevent import data
from batdetect2.train.augmentations import (
add_echo,
adjust_dataset_width,
mix_examples,
select_random_subclip,
)
from batdetect2.train.preprocess import (
TrainPreprocessingConfig,
generate_train_example,
)
def test_mix_examples(
recording_factory: Callable[..., data.Recording],
):
recording1 = recording_factory()
recording2 = recording_factory()
clip1 = data.Clip(recording=recording1, start_time=0.2, end_time=0.7)
clip2 = data.Clip(recording=recording2, start_time=0.3, end_time=0.8)
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
clip_annotation_2 = data.ClipAnnotation(clip=clip2)
config = TrainPreprocessingConfig()
example1 = generate_train_example(clip_annotation_1, config)
example2 = generate_train_example(clip_annotation_2, config)
mixed = mix_examples(example1, example2, config=config.preprocessing)
assert mixed["spectrogram"].shape == example1["spectrogram"].shape
assert mixed["detection"].shape == example1["detection"].shape
assert mixed["size"].shape == example1["size"].shape
assert mixed["class"].shape == example1["class"].shape
def test_add_echo(
recording_factory: Callable[..., data.Recording],
):
recording1 = recording_factory()
clip1 = data.Clip(recording=recording1, start_time=0.2, end_time=0.7)
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
config = TrainPreprocessingConfig()
original = generate_train_example(clip_annotation_1, config)
with_echo = add_echo(original, config=config.preprocessing)
assert with_echo["spectrogram"].shape == original["spectrogram"].shape
xr.testing.assert_identical(with_echo["size"], original["size"])
xr.testing.assert_identical(with_echo["class"], original["class"])
xr.testing.assert_identical(with_echo["detection"], original["detection"])
def test_selected_random_subclip_has_the_correct_width(
recording_factory: Callable[..., data.Recording],
):
recording1 = recording_factory()
clip1 = data.Clip(recording=recording1, start_time=0.2, end_time=0.7)
clip_annotation_1 = data.ClipAnnotation(clip=clip1)
config = TrainPreprocessingConfig()
original = generate_train_example(clip_annotation_1, config)
subclip = select_random_subclip(original, width=100)
assert subclip["spectrogram"].shape[1] == 100
def test_adjust_dataset_width():
height = 128
width = 512
samplerate = 48_000
times = np.linspace(0, 1, width)
audio_times = np.linspace(0, 1, samplerate)
frequency = np.linspace(0, 24_000, height)
width_subset = 356
audio_width_subset = int(samplerate * width_subset / width)
times_subset = times[:width_subset]
audio_times_subset = audio_times[:audio_width_subset]
dimensions = ["width", "height"]
class_names = [f"species_{i}" for i in range(17)]
spectrogram = np.random.random([height, width_subset])
sizes = np.random.random([len(dimensions), height, width_subset])
classes = np.random.random([len(class_names), height, width_subset])
audio = np.random.random([int(samplerate * width_subset / width)])
dataset = xr.Dataset(
data_vars={
"audio": (("audio_time",), audio),
"spectrogram": (("frequency", "time"), spectrogram),
"sizes": (("dimension", "frequency", "time"), sizes),
"classes": (("class", "frequency", "time"), classes),
},
coords={
"audio_time": audio_times_subset,
"time": times_subset,
"frequency": frequency,
"dimension": dimensions,
"class": class_names,
},
)
adjusted = adjust_dataset_width(dataset, width=width)
# Spectrogram was adjusted correctly
assert np.isclose(adjusted["spectrogram"].time, times).all()
assert (adjusted["spectrogram"].frequency == frequency).all()
# Sizes was adjusted correctly
assert np.isclose(adjusted["sizes"].time, times).all()
assert (adjusted["sizes"].frequency == frequency).all()
assert list(adjusted["sizes"].dimension.values) == dimensions
# Sizes was adjusted correctly
assert np.isclose(adjusted["classes"].time, times).all()
assert (adjusted["sizes"].frequency == frequency).all()
assert list(adjusted["classes"]["class"].values) == class_names
# Audio time was adjusted corretly
assert np.isclose(
len(adjusted["audio"].audio_time), len(audio_times), atol=2
)
assert np.isclose(
adjusted["audio"].audio_time[-1], audio_times[-1], atol=1e-3
)