mirror of
https://github.com/macaodha/batdetect2.git
synced 2026-01-10 17:19:34 +01:00
Compare commits
3 Commits
115084fd2b
...
615c811bb4
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
615c811bb4 | ||
|
|
41b18c3f0a | ||
|
|
16a0fa7b75 |
@ -7,6 +7,7 @@ from loguru import logger
|
||||
|
||||
from batdetect2.cli.base import cli
|
||||
from batdetect2.data import load_dataset_from_config
|
||||
from batdetect2.targets import load_target_config
|
||||
from batdetect2.train import (
|
||||
FullTrainingConfig,
|
||||
load_full_training_config,
|
||||
@ -20,6 +21,7 @@ __all__ = ["train_command"]
|
||||
@click.argument("train_dataset", type=click.Path(exists=True))
|
||||
@click.option("--val-dataset", type=click.Path(exists=True))
|
||||
@click.option("--model-path", type=click.Path(exists=True))
|
||||
@click.option("--targets", type=click.Path(exists=True))
|
||||
@click.option("--ckpt-dir", type=click.Path(exists=True))
|
||||
@click.option("--log-dir", type=click.Path(exists=True))
|
||||
@click.option("--config", type=click.Path(exists=True))
|
||||
@ -42,6 +44,7 @@ def train_command(
|
||||
ckpt_dir: Optional[Path] = None,
|
||||
log_dir: Optional[Path] = None,
|
||||
config: Optional[Path] = None,
|
||||
targets: Optional[Path] = None,
|
||||
config_field: Optional[str] = None,
|
||||
seed: Optional[int] = None,
|
||||
train_workers: int = 0,
|
||||
@ -62,12 +65,18 @@ def train_command(
|
||||
logger.info("Initiating training process...")
|
||||
|
||||
logger.info("Loading training configuration...")
|
||||
|
||||
conf = (
|
||||
load_full_training_config(config, field=config_field)
|
||||
if config is not None
|
||||
else FullTrainingConfig()
|
||||
)
|
||||
|
||||
if targets is not None:
|
||||
logger.info("Loading targets configuration...")
|
||||
targets_config = load_target_config(targets)
|
||||
conf = conf.model_copy(update=dict(targets=targets_config))
|
||||
|
||||
logger.info("Loading training dataset...")
|
||||
train_annotations = load_dataset_from_config(train_dataset)
|
||||
logger.debug(
|
||||
|
||||
@ -301,7 +301,8 @@ def load_batdetect2_merged_annotated_dataset(
|
||||
for ann in content:
|
||||
try:
|
||||
ann = FileAnnotation.model_validate(ann)
|
||||
except ValueError:
|
||||
except ValueError as err:
|
||||
logger.warning(f"Invalid annotation file: {err}")
|
||||
continue
|
||||
|
||||
if (
|
||||
@ -309,14 +310,17 @@ def load_batdetect2_merged_annotated_dataset(
|
||||
and dataset.filter.only_annotated
|
||||
and not ann.annotated
|
||||
):
|
||||
logger.debug(f"Skipping incomplete annotation {ann.id}")
|
||||
continue
|
||||
|
||||
if dataset.filter and dataset.filter.exclude_issues and ann.issues:
|
||||
logger.debug(f"Skipping annotation with issues {ann.id}")
|
||||
continue
|
||||
|
||||
try:
|
||||
clip = file_annotation_to_clip(ann, audio_dir=audio_dir)
|
||||
except FileNotFoundError:
|
||||
except FileNotFoundError as err:
|
||||
logger.warning(f"Error loading annotations: {err}")
|
||||
continue
|
||||
|
||||
annotations.append(file_annotation_to_clip_annotation(ann, clip))
|
||||
|
||||
@ -100,8 +100,11 @@ def extract_sound_events_df(
|
||||
|
||||
class_name = targets.encode_class(sound_event)
|
||||
|
||||
if class_name is None and exclude_generic:
|
||||
if class_name is None:
|
||||
if exclude_generic:
|
||||
continue
|
||||
else:
|
||||
class_name = targets.detection_class_name
|
||||
|
||||
start_time, low_freq, end_time, high_freq = compute_bounds(
|
||||
sound_event.sound_event.geometry
|
||||
@ -153,7 +156,7 @@ def compute_class_summary(
|
||||
sound_events = extract_sound_events_df(
|
||||
dataset,
|
||||
targets,
|
||||
exclude_generic=True,
|
||||
exclude_generic=False,
|
||||
exclude_non_target=True,
|
||||
)
|
||||
recordings = extract_recordings_df(dataset)
|
||||
|
||||
@ -103,7 +103,7 @@ def convert_raw_prediction_to_sound_event_prediction(
|
||||
tags = [
|
||||
*get_generic_tags(
|
||||
raw_prediction.detection_score,
|
||||
generic_class_tags=targets.generic_class_tags,
|
||||
generic_class_tags=targets.detection_class_tags,
|
||||
),
|
||||
*get_class_tags(
|
||||
raw_prediction.class_scores,
|
||||
|
||||
@ -140,16 +140,18 @@ class Targets(TargetProtocol):
|
||||
"""
|
||||
|
||||
class_names: List[str]
|
||||
generic_class_tags: List[data.Tag]
|
||||
detection_class_tags: List[data.Tag]
|
||||
dimension_names: List[str]
|
||||
detection_class_name: str
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
detection_class_name: str,
|
||||
encode_fn: SoundEventEncoder,
|
||||
decode_fn: SoundEventDecoder,
|
||||
roi_mapper: ROITargetMapper,
|
||||
class_names: list[str],
|
||||
generic_class_tags: List[data.Tag],
|
||||
detection_class_tags: List[data.Tag],
|
||||
filter_fn: Optional[SoundEventCondition] = None,
|
||||
roi_mapper_overrides: Optional[dict[str, ROITargetMapper]] = None,
|
||||
):
|
||||
@ -175,8 +177,9 @@ class Targets(TargetProtocol):
|
||||
transform_fn : SoundEventTransformation, optional
|
||||
Configured function to transform annotation tags. Defaults to None.
|
||||
"""
|
||||
self.detection_class_name = detection_class_name
|
||||
self.class_names = class_names
|
||||
self.generic_class_tags = generic_class_tags
|
||||
self.detection_class_tags = detection_class_tags
|
||||
self.dimension_names = roi_mapper.dimension_names
|
||||
|
||||
self._roi_mapper = roi_mapper
|
||||
@ -381,7 +384,8 @@ def build_targets(config: Optional[TargetConfig] = None) -> Targets:
|
||||
decode_fn=decode_fn,
|
||||
class_names=class_names,
|
||||
roi_mapper=roi_mapper,
|
||||
generic_class_tags=generic_class_tags,
|
||||
detection_class_name=config.detection_target.name,
|
||||
detection_class_tags=generic_class_tags,
|
||||
roi_mapper_overrides=roi_overrides,
|
||||
)
|
||||
|
||||
|
||||
@ -152,25 +152,19 @@ def build_trainer_callbacks(
|
||||
if checkpoint_dir is None:
|
||||
checkpoint_dir = DEFAULT_CHECKPOINT_DIR
|
||||
|
||||
filename = "best-{epoch:02d}-{val_loss:.0f}"
|
||||
if experiment_name is not None:
|
||||
checkpoint_dir = checkpoint_dir / experiment_name
|
||||
|
||||
if run_name is not None:
|
||||
filename = f"run_{run_name}_{filename}"
|
||||
|
||||
if experiment_name is not None:
|
||||
filename = f"experiment_{experiment_name}_{filename}"
|
||||
|
||||
model_checkpoint = ModelCheckpoint(
|
||||
dirpath=str(checkpoint_dir),
|
||||
save_top_k=1,
|
||||
filename=filename,
|
||||
monitor="total_loss/val",
|
||||
)
|
||||
|
||||
model_checkpoint.CHECKPOINT_EQUALS_CHAR = "_" # type: ignore
|
||||
checkpoint_dir = checkpoint_dir / run_name
|
||||
|
||||
return [
|
||||
model_checkpoint,
|
||||
ModelCheckpoint(
|
||||
dirpath=str(checkpoint_dir),
|
||||
save_top_k=1,
|
||||
filename="best-{epoch:02d}-{val_loss:.0f}",
|
||||
monitor="total_loss/val",
|
||||
),
|
||||
ValidationMetrics(
|
||||
metrics=[
|
||||
DetectionAveragePrecision(),
|
||||
@ -220,7 +214,8 @@ def build_trainer(
|
||||
config=conf.evaluation,
|
||||
preprocessor=build_preprocessor(conf.preprocess),
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
experiment_name=train_logger.name,
|
||||
experiment_name=experiment_name,
|
||||
run_name=run_name,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@ -94,8 +94,10 @@ class TargetProtocol(Protocol):
|
||||
class_names: List[str]
|
||||
"""Ordered list of unique names for the specific target classes."""
|
||||
|
||||
generic_class_tags: List[data.Tag]
|
||||
"""List of tags representing the generic (unclassified) category."""
|
||||
detection_class_tags: List[data.Tag]
|
||||
"""List of tags representing the detection category (unclassified)."""
|
||||
|
||||
detection_class_name: str
|
||||
|
||||
dimension_names: List[str]
|
||||
"""Names of the size dimensions (e.g., ['width', 'height'])."""
|
||||
|
||||
Loading…
Reference in New Issue
Block a user